logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Arithmetic Geometry And Coding Theory Agct 2003 1st Edition Yves Aubry

  • SKU: BELL-4181500
Arithmetic Geometry And Coding Theory Agct 2003 1st Edition Yves Aubry
$ 31.00 $ 45.00 (-31%)

0.0

0 reviews

Arithmetic Geometry And Coding Theory Agct 2003 1st Edition Yves Aubry instant download after payment.

Publisher: Société Mathématique de France
File Extension: PDF
File size: 2.59 MB
Pages: 234
Author: Yves Aubry, Gilles Lachaud
ISBN: 9782856291757, 2856291759
Language: English
Year: 2005
Edition: 1

Product desciption

Arithmetic Geometry And Coding Theory Agct 2003 1st Edition Yves Aubry by Yves Aubry, Gilles Lachaud 9782856291757, 2856291759 instant download after payment.

Résumé :
Arithmétique, géométrie et théorie des codes (AGCT 2003)
En mai 2003 se sont tenus au Centre International de Rencontres Mathématiques à Marseille (France), deux événements centrés sur l'Arithmétique, la Géométrie et leurs applications à la théorie des Codes ainsi qu'à la Cryptographie : une école Européenne ``Géométrie Algébrique et Théorie de l'Information'' ainsi que la 9ème édition du colloque international ``Arithmétique, Géométrie et Théorie des Codes''. Certains des cours et des conférences font l'objet d'un article publié dans ce volume. Les thèmes abordés furent à la fois théoriques pour certains et tournés vers des applications pour d'autres : variétés abéliennes, corps de fonctions et courbes sur les corps finis, groupes de Galois de pro-p-extensions, fonctions zêta de Dedekind de corps de nombres, semi-groupes numériques, nombres de Waring, complexité bilinéaire de la multiplication dans les corps finis et problèmes de nombre de classes.
Mots clefs : Fonctions zêta, variétés abéliennes, corps de fonctions, courbes sur les corps finis, tours de corps de fonctions, corps finis, graphes, semi-groupes numériques, polynômes sur les corps finis, cryptographie, courbes hyperelliptiques, représentations p-adiques, tours de corps de classe, groupe de Galois, points rationels, fractions continues, régulateurs, nombre de classes d'idéaux, complexité bilinéaire, jacobienne hyperelliptiques
Abstract:
In may 2003, two events have been held in the ``Centre International de Rencontres Mathématiques'' in Marseille (France), devoted to Arithmetic, Geometry and their applications in Coding theory and Cryptography: an European school ``Algebraic Geometry and Information Theory'' and the 9-th international conference ``Arithmetic, Geometry and Coding Theory''. Some of the courses and the conferences are published in this volume. The topics were theoretical for some ones and turned towards applications for others: abelian varieties, function fields and curves over finite fields, Galois group of pro-p-extensions, Dedekind zeta functions of number fields, numerical semigroups, Waring numbers, bilinear complexity of the multiplication in finite fields and class number problems.
Key words: Zeta functions, abelian varieties, functions fields, curves over finite fields, towers of function fields, finite fields, graphs, numerical semigroups, polynomials over finite fields, cryptography, hyperelliptic curves, p-adic representations, class field towers, Galois groups, rational points, continued fractions, regulators, ideal class number, bilinear complexity, hyperelliptic jacobians
Class. math. : 14H05, 14G05, 11G20, 20M99, 94B27, 11T06, 11T71, 11R37, 14G10, 14G15, 11R58, 11A55, 11R42, 11Yxx, 12E20, 14H40, 14K05
Table of Contents
* P. Beelen, A. Garcia, and H. Stichtenoth -- On towers of function fields over finite fields
* M. Bras-Amorós -- Addition behavior of a numerical semigroup
* O. Moreno and F. N. Castro -- On the calculation and estimation of Waring number for finite fields
* G. Frey and T. Lange -- Mathematical background of Public Key Cryptography
* A. Garcia -- On curves over finite fields
* F. Hajir -- Tame pro-p Galois groups: A survey of recent work
* E. W. Howe, K. E. Lauter, and J. Top -- Pointless curves of genus three and four
* D. Le Brigand -- Real quadratic extensions of the rational function field in characteristic two
* S. R. Louboutin -- Explicit upper bounds for the residues at s=1 of the Dedekind zeta functions of some totally real number fields
* S. Ballet and R. Rolland -- On the bilindar complexity of the multiplication in finite fields
* Yu. G. Zarhin -- Homomorphisms of abelian varieties

Related Products