logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Data Analysis With Open Source Tools Philipp K Janert

  • SKU: BELL-47936594
Data Analysis With Open Source Tools Philipp K Janert
$ 31.00 $ 45.00 (-31%)

4.7

106 reviews

Data Analysis With Open Source Tools Philipp K Janert instant download after payment.

Publisher: O'Reilly Media, Incorporated
File Extension: PDF
File size: 10.73 MB
Pages: 509
Author: Philipp K. Janert
ISBN: 9780596802356, 0596802358
Language: English
Year: 2011

Product desciption

Data Analysis With Open Source Tools Philipp K Janert by Philipp K. Janert 9780596802356, 0596802358 instant download after payment.

Collecting data is relatively easy, but turning raw information into something useful requires that you know how to extract precisely what you need. With this insightful book, intermediate to experienced programmers interested in data analysis will learn techniques for working with data in a business environment. You'll learn how to look at data to discover what it contains, how to capture those ideas in conceptual models, and then feed your understanding back into the organization through business plans, metrics dashboards, and other applications. Along the way, you'll experiment with concepts through hands-on workshops at the end of each chapter. Above all, you'll learn how to think about the results you want to achieve -- rather than rely on tools to think for you. Use graphics to describe data with one, two, or dozens of variables Develop conceptual models using back-of-the-envelope calculations, as well as scaling and probability arguments Mine data with computationally intensive methods such as simulation and clustering Make your conclusions understandable through reports, dashboards, and other metrics programs Understand financial calculations, including the time-value of money Use dimensionality reduction techniques or predictive analytics to conquer challenging data analysis situations Become familiar with different open source programming environments for data analysis "Finally, a concise reference for understanding how to conquer piles of data." --Austin King, Senior Web Developer, Mozilla "An indispensable text for aspiring data scientists." --Michael E. Driscoll, CEO/Founder, Dataspora

Related Products