logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Deep Learning Algorithms Zoran Gacovski

  • SKU: BELL-50883686
Deep Learning Algorithms Zoran Gacovski
$ 31.00 $ 45.00 (-31%)

4.3

48 reviews

Deep Learning Algorithms Zoran Gacovski instant download after payment.

Publisher: Arcler Press
File Extension: PDF
File size: 13.8 MB
Pages: 412
Author: Zoran Gacovski
ISBN: 9781774691830, 1774691833
Language: English
Year: 2022

Product desciption

Deep Learning Algorithms Zoran Gacovski by Zoran Gacovski 9781774691830, 1774691833 instant download after payment.

This book covers different topics from deep learning algorithms, methods and approaches for deep learning, deep learning applications in biology, deep learning applications in medicine, and deep learning applications in pattern recognition systems. Section 1 focuses on methods and approaches for deep learning, describing advancements in deep learning theory and applications - perspective in 2020 and beyond; deep ensemble reinforcement learning with multiple deep deterministic policy gradient algorithm; dynamic decision-making for stabilized deep learning software platforms; deep learning for hyperspectral data classification through exponential momentum deep convolution neural networks; and ensemble network architecture for deep reinforcement learning. Section 2 focuses on deep learning applications in biology, describing fish detection using deep learning; deep learning identification of tomato leaf disease; deep learning for plant identification in natural environment; and applying deep learning models to mouse behavior recognition. Section 3 focuses on deep learning applications in medicine, describing application of deep learning in brain hemorrhage classification using transfer learning; a review of the application of deep learning in brachytherapy; exploring deep learning and transfer learning for colonic polyp classification; and deep learning algorithm for brain-computer interface. Section 4 focuses on deep learning applications in pattern recognition systems, describing application of deep learning in airport visibility forecast; hierarchical representations feature deep learning for face recognition; review of research on text sentiment analysis based on deep learning; classifying hand written digits with deep learning; and bitcoin price prediction based on deep learning methods.

Related Products