logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

A Contribution To Exchange Rate Forecasting Based On Machine Learning Techniques Jos Antonio Sanabria Montaez

  • SKU: BELL-34710402
A Contribution To Exchange Rate Forecasting Based On Machine Learning Techniques Jos Antonio Sanabria Montaez
$ 31.00 $ 45.00 (-31%)

0.0

0 reviews

A Contribution To Exchange Rate Forecasting Based On Machine Learning Techniques Jos Antonio Sanabria Montaez instant download after payment.

Publisher: Universidad Ramon Llull
File Extension: PDF
File size: 1.67 MB
Author: José Antonio Sanabria Montañez
Language: English
Year: 2011

Product desciption

A Contribution To Exchange Rate Forecasting Based On Machine Learning Techniques Jos Antonio Sanabria Montaez by José Antonio Sanabria Montañez instant download after payment.

The purpose of this thesis is to examine the contribution made by machine learning techniques on exchange rate forecasting. Such contributions are facilitated and enhanced by the use of fundamental economic variables, technical indicators and business and consumer survey variables as inputs in the forecasting models selected. This research has been organized in a compendium of four articles. The aim of each of these four articles is to contribute to advance our knowledge on the effects and means by which the use of fundamental economic variables, technical indicators, business and consumer surveys, and a model’s free-parameters selection is capable of improving exchange rate predictions. Through the use of a non-linear forecasting technique, one research paper examines the effect of fundamental economic variables and a model’s parameters selection on exchange rate forecasts, whereas the other three articles concentrate on the effect of technical indicators, a model’s parameters selection and business and consumer surveys variables on exchange rate forecasting.
The first paper of this thesis has the objective of examining fundamental economic variables and a forecasting model’s parameters in an effort to understand the possible advantages or disadvantages these variables may bring to the exchange rate predictions in terms of forecasting performance and accuracy. The second paper of this thesis analyses how the combination of moving averages, business and consumer surveys and a forecasting model’s parameters improves exchange rate predictions. Compared to the first paper, this second paper adds moving averages and business and consumer surveys variables as inputs to the forecasting model, and disregards the use of fundamental economic variables. One of the goals of this paper is to determine the possible effects of business and consumer surveys on exchange rates.
The third paper of this thesis has the same objectives as the second paper, but its analysis is expanded by taking into account the exchange rates of 7 countries. The fourth paper in this thesis takes a similar approach as the second and third papers, but makes use of a single technical indicator. In general, this thesis focuses on the improvement of exchange rate predictions through the use of support vector machines. A combination of variables and a model’s parameters selection enhances the way to achieve this purpose.

Related Products