logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Advanced Deep Learning With Tensorflow 2 And Keras Apply Dl Gans Vaes Deep Rl Unsupervised Learning Object Detection And Segmentation And More 2nd Edition 2nd Edition Rowel Atienza

  • SKU: BELL-11116256
Advanced Deep Learning With Tensorflow 2 And Keras Apply Dl Gans Vaes Deep Rl Unsupervised Learning Object Detection And Segmentation And More 2nd Edition 2nd Edition Rowel Atienza
$ 31.00 $ 45.00 (-31%)

5.0

38 reviews

Advanced Deep Learning With Tensorflow 2 And Keras Apply Dl Gans Vaes Deep Rl Unsupervised Learning Object Detection And Segmentation And More 2nd Edition 2nd Edition Rowel Atienza instant download after payment.

Publisher: Packt Publishing
File Extension: PDF
File size: 20.08 MB
Pages: 512
Author: Rowel Atienza
ISBN: 9781838821654, 1838821651
Language: English
Year: 2020
Edition: 2

Product desciption

Advanced Deep Learning With Tensorflow 2 And Keras Apply Dl Gans Vaes Deep Rl Unsupervised Learning Object Detection And Segmentation And More 2nd Edition 2nd Edition Rowel Atienza by Rowel Atienza 9781838821654, 1838821651 instant download after payment.

Updated and revised second edition of the bestselling guide to advanced deep learning with TensorFlow 2 and Keras

Key Features
  • Explore the most advanced deep learning techniques that drive modern AI results
  • New coverage of unsupervised deep learning using mutual information, object detection, and semantic segmentation
  • Completely updated for TensorFlow 2.x
Book Description

Advanced Deep Learning with TensorFlow 2 and Keras, Second Edition is a completely updated edition of the bestselling guide to the advanced deep learning techniques available today. Revised for TensorFlow 2.x, this edition introduces you to the practical side of deep learning with new chapters on unsupervised learning using mutual information, object detection (SSD), and semantic segmentation (FCN and PSPNet), further allowing you to create your own cutting-edge AI projects.

Using Keras as an open-source deep learning library, the book features hands-on projects that show you how to create more effective AI with the most up-to-date techniques.

Starting with an overview of multi-layer perceptrons (MLPs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs), the book then introduces more cutting-edge techniques as you explore deep neural network architectures, including ResNet and DenseNet, and how to create autoencoders. You will then learn about GANs, and how they can unlock new levels of AI performance.

Next, you'll discover how a variational autoencoder (VAE) is implemented, and how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans. You'll also learn to implement DRL such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI.

What you will learn
  • Use mutual information maximization techniques to perform unsupervised learning
  • Use segmentation to identify the pixel-wise class of each object in an image
  • Identify both the bounding box and class of objects in an image using object detection
  • Learn the building blocks for advanced techniques - MLPss, CNN, and RNNs
  • Understand deep neural networks - including ResNet and DenseNet
  • Understand and build autoregressive models – autoencoders, VAEs, and GANs
  • Discover and implement deep reinforcement learning methods
Who this book is for

This is not an introductory book, so fluency with Python is required. The reader should also be familiar with some machine learning approaches, and practical experience with DL will also be helpful. Knowledge of Keras or TensorFlow 2.0 is not required but is recommended.

Table of Contents
  1. Introducing Advanced Deep Learning with Keras
  2. Deep Neural Networks
  3. Autoencoders
  4. Generative Adversarial Networks (GANs)
  5. Improved GANs
  6. Disentangled Representation GANs
  7. Cross-Domain GANs
  8. Variational Autoencoders (VAEs)
  9. Deep Reinforcement Learning
  10. Policy Gradient Methods
  11. Object Detection
  12. Semantic Segmentation
  13. Unsupervised Learning Using Mutual Information

Related Products