logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Advanced Number Theory With Applications 1st Edition Richard A Mollin

  • SKU: BELL-2333764
Advanced Number Theory With Applications 1st Edition Richard A Mollin
$ 31.00 $ 45.00 (-31%)

4.0

86 reviews

Advanced Number Theory With Applications 1st Edition Richard A Mollin instant download after payment.

Publisher: CRC Press
File Extension: PDF
File size: 3.8 MB
Pages: 481
Author: Richard A. Mollin
ISBN: 9781420083286, 1420083287
Language: English
Year: 2010
Edition: 1

Product desciption

Advanced Number Theory With Applications 1st Edition Richard A Mollin by Richard A. Mollin 9781420083286, 1420083287 instant download after payment.

Exploring one of the most dynamic areas of mathematics, Advanced Number Theory with Applications covers a wide range of algebraic, analytic, combinatorial, cryptographic, and geometric aspects of number theory. Written by a recognized leader in algebra and number theory, the book includes a page reference for every citing in the bibliography and more than 1,500 entries in the index so that students can easily cross-reference and find the appropriate data. With numerous examples throughout, the text begins with coverage of algebraic number theory, binary quadratic forms, Diophantine approximation, arithmetic functions, p-adic analysis, Dirichlet characters, density, and primes in arithmetic progression. It then applies these tools to Diophantine equations, before developing elliptic curves and modular forms. The text also presents an overview of Fermat’s Last Theorem (FLT) and numerous consequences of the ABC conjecture, including Thue–Siegel–Roth theorem, Hall’s conjecture, the Erd?s–Mollin-–Walsh conjecture, and the Granville–Langevin Conjecture. In the appendix, the author reviews sieve methods, such as Eratothesenes’, Selberg’s, Linnik’s, and Bombieri’s sieves. He also discusses recent results on gaps between primes and the use of sieves in factoring. By focusing on salient techniques in number theory, this textbook provides the most up-to-date and comprehensive material for a second course in this field. It prepares students for future study at the graduate level.

Related Products