logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Algorithmic Lie Theory For Solving Ordinary Differential Equations 1st Edition Fritz Schwarz

  • SKU: BELL-1008056
Algorithmic Lie Theory For Solving Ordinary Differential Equations 1st Edition Fritz Schwarz
$ 31.00 $ 45.00 (-31%)

5.0

38 reviews

Algorithmic Lie Theory For Solving Ordinary Differential Equations 1st Edition Fritz Schwarz instant download after payment.

Publisher: Chapman & Hall/CRC
File Extension: PDF
File size: 2.26 MB
Pages: 445
Author: Fritz Schwarz
ISBN: 9781584888895, 9781584888901, 158488889X, 1584888903
Language: English
Year: 2008
Edition: 1

Product desciption

Algorithmic Lie Theory For Solving Ordinary Differential Equations 1st Edition Fritz Schwarz by Fritz Schwarz 9781584888895, 9781584888901, 158488889X, 1584888903 instant download after payment.

Despite the fact that Sophus Lie's theory was virtually the only systematic method for solving nonlinear ordinary differential equations (ODEs), it was rarely used for practical problems because of the massive amount of calculations involved. But with the advent of computer algebra programs, it became possible to apply Lie theory to concrete problems. Taking this approach, Algorithmic Lie Theory for Solving Ordinary Differential Equations serves as a valuable introduction for solving differential equations using Lie's theory and related results. After an introductory chapter, the book provides the mathematical foundation of linear differential equations, covering Loewy's theory and Janet bases. The following chapters present results from the theory of continuous groups of a 2-D manifold and discuss the close relation between Lie's symmetry analysis and the equivalence problem. The core chapters of the book identify the symmetry classes to which quasilinear equations of order two or three belong and transform these equations to canonical form. The final chapters solve the canonical equations and produce the general solutions whenever possible as well as provide concluding remarks. The appendices contain solutions to selected exercises, useful formulae, properties of ideals of monomials, Loewy decompositions, symmetries for equations from Kamke's collection, and a brief description of the software system ALLTYPES for solving concrete algebraic problems.

Related Products