logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

An Introduction To Identification J P Norton

  • SKU: BELL-35134920
An Introduction To Identification J P Norton
$ 31.00 $ 45.00 (-31%)

0.0

0 reviews

An Introduction To Identification J P Norton instant download after payment.

Publisher: Dover Publications
File Extension: PDF
File size: 56.96 MB
Pages: 320
Author: J. P. Norton
ISBN: 9780486469355, 0486469352
Language: English
Year: 2009

Product desciption

An Introduction To Identification J P Norton by J. P. Norton 9780486469355, 0486469352 instant download after payment.

Advanced undergraduates and graduate students of electrical, chemical, mechanical, and environmental engineering will appreciate this text for a course in systems identification. In addition to the theoretical basis for mathematical modeling, it covers a variety of tried-and-true identification algorithms and their applications. Moreover, its broad view and fairly modest mathematical level offer readers a quick appraisal of established methods and their limitations. In addition to surveys covering classical methods of identification — including impulse, step, and sine-wave testing — and identification based on correlation function, the text examines least-squares model fitting, statistical properties of estimators, optimal estimation, and Bayes and maximum-likelihood estimators. Other topics include experiment design and choice of model structure as well as model validation. Numerical examples show students how to apply the modeling theories, and a chapter on specialized topics introduces research areas.

Related Products