logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

An Introduction To Statistical Data Science Theory And Models 15th Edition Giorgio Picci

  • SKU: BELL-61507990
An Introduction To Statistical Data Science Theory And Models 15th Edition Giorgio Picci
$ 31.00 $ 45.00 (-31%)

4.4

102 reviews

An Introduction To Statistical Data Science Theory And Models 15th Edition Giorgio Picci instant download after payment.

Publisher: Springer Nature
File Extension: EPUB
File size: 28.82 MB
Pages: 944
Author: Giorgio Picci
ISBN: 9783031666193, 3031666194
Language: English
Year: 2024
Edition: 15

Product desciption

An Introduction To Statistical Data Science Theory And Models 15th Edition Giorgio Picci by Giorgio Picci 9783031666193, 3031666194 instant download after payment.

This graduate textbook on the statistical approach to data science describes the basic ideas, scientific principles and common techniques for the extraction of mathematical models from observed data. Aimed at young scientists, and motivated by their scientific prospects, it provides first principle derivations of various algorithms and procedures, thereby supplying a solid background for their future specialization to diverse fields and applications.

The beginning of the book presents the basics of statistical science, with an exposition on linear models. This is followed by an analysis of some numerical aspects and various regularization techniques, including LASSO, which are particularly important for large scale problems. Decision problems are studied both from the classical hypothesis testing perspective and, particularly, from a modern support-vector perspective, in the linear and non-linear context alike. Underlying the book is the Bayesian approach and the Bayesian interpretation of various algorithms and procedures. This is the key to principal components analysis and canonical correlation analysis, which are explained in detail. Following a chapter on nonlinear inference, including material on neural networks, the book concludes with a discussion on time series analysis and estimating their dynamic models.

Featuring examples and exercises partially motivated by engineering applications, this book is intended for graduate students in applied mathematics and engineering with a general background in probability and linear algebra

Related Products