logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Applied Text Mining Usman Qamar Muhammad Summair Raza

  • SKU: BELL-57679016
Applied Text Mining Usman Qamar Muhammad Summair Raza
$ 31.00 $ 45.00 (-31%)

5.0

18 reviews

Applied Text Mining Usman Qamar Muhammad Summair Raza instant download after payment.

Publisher: Springer
File Extension: PDF
File size: 12.92 MB
Pages: 505
Author: Usman Qamar, Muhammad Summair Raza
ISBN: 9783031519161, 3031519167
Language: English
Year: 2024

Product desciption

Applied Text Mining Usman Qamar Muhammad Summair Raza by Usman Qamar, Muhammad Summair Raza 9783031519161, 3031519167 instant download after payment.

This textbook covers the concepts, theories, and implementations of text mining and natural language processing (NLP). It covers both the theory and the practical implementation, and every concept is explained with simple and easy-to-understand examples. It consists of three parts. In Part 1 which consists of three chapters details about basic concepts and applications of text mining are provided, including eg sentiment analysis and opinion mining. It builds a strong foundation for the reader in order to understand the remaining parts. In the five chapters of Part 2, all the core concepts of text analytics like feature engineering, text classification, text clustering, text summarization, topic mapping, and text visualization are covered. Finally, in Part 3 there are three chapters covering deep-learning-based text mining, which is the dominating method applied to practically all text mining tasks nowadays. Various deep learning approaches to text mining are covered, including models for processing and parsing text, for lexical analysis, and for machine translation. All three parts include large parts of Python code that shows the implementation of the described concepts and approaches. The textbook was specifically written to enable the teaching of both basic and advanced concepts from one single book. The implementation of every text mining task is carefully explained, based Python as the programming language and Spacy and NLTK as Natural Language Processing libraries. The book is suitable for both undergraduate and graduate students in computer science and engineering.

Related Products