Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.
Please read the tutorial at this link: https://ebookbell.com/faq
We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.
For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.
EbookBell Team
5.0
68 reviewsBesides the population of pyramidal neurons using glutamate as a neurotransmitter, GABAergic cortical interneurons form a second, quite heterogeneous group of neurons in the mammalian cerebral cortex. It is actually well appreciated that the interneurons play various important roles in cortical neuronal networks both in normal and pathological states. Based on connectivity pattern, developmental, morphological and electrophysiological properties, distinct subgroups of GABAergic interneurons can be differentiated in the neocortex as well as in the hippocampal formation. In this Research Topic, we concentrate on the inhibitory interneurons expressing calcium-binding protein calretinin (CR). In our opinion, there are many reasons why these cells deserve our special attention.
CR expressing (CR+) interneurons differ from other interneuronal populations in their site of origin, in their significantly higher counts in cerebral cortex of primates in comparison to rodents, as well as in their connectivity pattern with high proportion of synapses formed with other interneuronal subtypes. Interestingly, they innervate dendritic inhibitory cells and therefore may play a role in the regulation of the dendritic inputs of pyramidal cells both in the neocortex and hippocampus. CR+ interneurons in the prefrontal cortex were suggested to be instrumental for formation of species-specific neocortical circuits important for cognitive functions of primates. A “gating cell” function of CR+ interneurons – switching the flow of information between two pathways – was suggested in the visual and in the perirhinal cortex. A subpopulation of CR+ interneurons is very probably involved in regulation of blood flow dynamics and energy metabolism in the cortex.
Diverse populations of cortical inhibitory interneurons are differently affected in various neurologic and psychiatric disorders. Interestingly, in comparison with other interneuronal types, CR+ interneurons seem to be less compromised in
…