logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Borel Liftings Of Borel Sets Some Decidable And Undecidable Statements Gabriel Debs

  • SKU: BELL-5707664
Borel Liftings Of Borel Sets Some Decidable And Undecidable Statements Gabriel Debs
$ 31.00 $ 45.00 (-31%)

4.0

36 reviews

Borel Liftings Of Borel Sets Some Decidable And Undecidable Statements Gabriel Debs instant download after payment.

Publisher: American Mathematical Society
File Extension: PDF
File size: 11.97 MB
Pages: 118
Author: Gabriel Debs, Jean Saint Raymond
ISBN: 9780821839713, 0821839713
Language: English
Year: 2007

Product desciption

Borel Liftings Of Borel Sets Some Decidable And Undecidable Statements Gabriel Debs by Gabriel Debs, Jean Saint Raymond 9780821839713, 0821839713 instant download after payment.

One of the aims of this work is to investigate some natural properties of Borel sets which are undecidable in $ZFC$. The authors' starting point is the following elementary, though non-trivial result: Consider $X \subset 2omega\times2omega$, set $Y=\pi(X)$, where $\pi$ denotes the canonical projection of $2omega\times2omega$ onto the first factor, and suppose that $(\star)$ : ""Any compact subset of $Y$ is the projection of some compact subset of $X$"". If moreover $X$ is $\mathbf{\Pi 0 2$ then $(\star\star)$: ""The restriction of $\pi$ to some relatively closed subset of $X$ is perfect onto $Y$"" it follows that in the present case $Y$ is also $\mathbf{\Pi 0 2$. Notice that the reverse implication $(\star\star)\Rightarrow(\star)$ holds trivially for any $X$ and $Y$. But the implication $(\star)\Rightarrow (\star\star)$ for an arbitrary Borel set $X \subset 2omega\times2omega$ is equivalent to the statement ""$\forall \alpha\in \omegaomega, \,\aleph 1$ is inaccessible in $L(\alpha)$"". More precisely The authors prove that the validity of $(\star)\Rightarrow(\star\star)$ for all $X \in \varSigma0 {1 \xi 1 $, is equivalent to ""$\aleph \xi \aleph 1$"". However we shall show independently, that when $X$ is Borel one can, in $ZFC$, derive from $(\star)$ the weaker conclusion that $Y$ is also Borel and of the same Baire class as $X$. This last result solves an old problem about compact covering mappings. In fact these results are closely related to the following general boundedness principle Lift$(X, Y)$: ""If any compact subset of $Y$ admits a continuous lifting in $X$, then $Y$ admits a continuous lifting in $X$"", where by a lifting of $Z\subset \pi(X)$ in $X$ we mean a mapping on $Z$ whose graph is contained in $X$. The main result of this work will give the exact set theoretical strength of this principle depending on the descriptive complexity of $X$ and $Y$. The authors also prove a similar result for a variation of Lift$(X, Y)$ in which ""continuous liftings"" are replaced by ""Borel liftings"", and which answers a question of H. Friedman. Among other applications the authors obtain a complete solution to a problem which goes back to Lusin concerning the existence of $\mathbf{\Pi 1 1$ sets with all constituents in some given class $\mathbf{\Gamma $ of Borel sets, improving earlier results by J. Stern and R. Sami. The proof of the main result will rely on a nontrivial representation of Borel sets (in $ZFC$) of a new type, involving a large amount of ""abstract algebra"". This representation was initially developed for the purposes of this proof, but has several other applications.

Related Products