logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Bosonic Strings A Mathematical Treatment Jurgen Jost

  • SKU: BELL-1378306
Bosonic Strings A Mathematical Treatment Jurgen Jost
$ 31.00 $ 45.00 (-31%)

4.3

58 reviews

Bosonic Strings A Mathematical Treatment Jurgen Jost instant download after payment.

Publisher: American Mathematical Society
File Extension: DJVU
File size: 1 MB
Pages: 105
Author: Jurgen Jost
ISBN: 9780821826447, 0821826441
Language: English
Year: 2001

Product desciption

Bosonic Strings A Mathematical Treatment Jurgen Jost by Jurgen Jost 9780821826447, 0821826441 instant download after payment.

Presented in this book is a mathematical treatment of Bosonic string theory from the point of view of global geometry. As motivation, the author presents the theory of point particles and Feynman path integrals. He considers the theory of strings as a quantization of the classical Plateau problem for minimal surfaces. The conformal variance of the relevant functional, the Polyakov action or (in mathematical terminology) the Dirichlet integral, leads to an anomaly in the process of quantization. The mathematical concepts needed to resolve this anomaly via the Faddeev-Popov method are introduced, specifically the geometry of the Teichmuüller and moduli spaces of Riemann surfaces and the corresponding function spaces, i.e., Hilbert spaces of Sobolev type and diffeomorphism groups. Other useful tools are the algebraic geometry of Riemann surfaces and infinite-dimensional determinants. Also discussed are the boundary regularity questions. The main result is a presentation of the string partition function as an integral over a moduli space of Riemann surfaces. Some new physical concepts, such as D-branes, are also discussed.

This volume offers a mathematically rigorous treatment of some aspects of string theory, employs a global geometry approach, systematically treats strings with boundary, and carefully explains all mathematical concepts and tools.

Related Products