Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.
Please read the tutorial at this link: https://ebookbell.com/faq
We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.
For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.
EbookBell Team
0.0
0 reviewsNowadays, highly-detailed animations of live-actor performances are increasingly easier to acquire and 3D Video has reached considerable attentions in visual media production. In this book, we address the problem of extracting or acquiring and then reusing non-rigid parametrization for video-based animations. At first sight, a crucial challenge is to reproduce plausible boneless deformations while preserving global and local captured properties of dynamic surfaces with a limited number of controllable, flexible and reusable parameters. To solve this challenge, we directly rely on a skin-detached dimension reduction thanks to the well-known cage-based paradigm. First, we achieve Scalable Inverse Cage-based Modeling by transposing the inverse kinematics paradigm on surfaces. Thus, we introduce a cage inversion process with user-specified screen-space constraints. Secondly, we convert non-rigid animated surfaces into a sequence of optimal cage parameters via Cage-based Animation Conversion. Building upon this reskinning procedure, we also develop a well-formed Animation Cartoonization algorithm for multi-view data in term of cage-based surface exaggeration and video-based appearance stylization. Thirdly, motivated by the relaxation of prior knowledge on the data, we propose a promising unsupervised approach to perform Iterative Cage-based Geometric Registration. This novel registration scheme deals with reconstructed target point clouds obtained from multi-view video recording, in conjunction with a static and wrinkled template mesh. Above all, we demonstrate the strength of cage-based subspaces in order to reparametrize highly non-rigid dynamic surfaces, without the need of secondary deformations. To the best of our knowledge this book opens the field of Cage-based Performance Capture.