logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Causal Inference In Statistics A Primer 1st Edition Judea Pearl

  • SKU: BELL-5329302
Causal Inference In Statistics A Primer 1st Edition Judea Pearl
$ 31.00 $ 45.00 (-31%)

0.0

0 reviews

Causal Inference In Statistics A Primer 1st Edition Judea Pearl instant download after payment.

Publisher: Wiley
File Extension: PDF
File size: 1.45 MB
Pages: 150
Author: Judea Pearl, Madelyn Glymour, Nicholas P. Jewell
ISBN: 9781119186847, 1119186846
Language: English
Year: 2016
Edition: 1

Product desciption

Causal Inference In Statistics A Primer 1st Edition Judea Pearl by Judea Pearl, Madelyn Glymour, Nicholas P. Jewell 9781119186847, 1119186846 instant download after payment.

Causal Inference in Statistics: A Primer

Judea Pearl, Computer Science and Statistics, University of California Los Angeles, USA

Madelyn Glymour, Philosophy, Carnegie Mellon University, Pittsburgh, USA

and

Nicholas P. Jewell, Biostatistics, University of California, Berkeley, USA

Causality is central to the understanding and use of data. Without an understanding of cause effect relationships, we cannot use data to answer questions as basic as, “Does this treatment harm or help patients?”  But though hundreds of introductory texts are available on statistical methods of data analysis, until now, no beginner-level book has been written about the exploding arsenal of methods that can tease causal information from data.

Causal Inference in Statistics fills that gap. Using simple examples and plain language, the book lays out how to define causal parameters; the assumptions necessary to estimate causal parameters in a variety of situations; how to express those assumptions mathematically; whether those assumptions have testable implications; how to predict the effects of interventions; and how to reason counterfactually. These are the foundational tools that any student of statistics needs to acquire in order to use statistical methods to answer causal questions of interest.

This book is accessible to anyone with an interest in interpreting data, from undergraduates, professors, researchers, or to the interested layperson. Examples are drawn from a wide variety of fields, including medicine, public policy, and law; a brief introduction to probability and statistics is provided for the uninitiated; and each chapter comes with study questions to reinforce the readers understanding.

Related Products