Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.
Please read the tutorial at this link: https://ebookbell.com/faq
We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.
For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.
EbookBell Team
5.0
110 reviewsThe completion of the Human Genome Project and the rapid progress in cell bi- ogy and biochemical engineering, are major forces driving the steady increase of approved biotech products, especially biopharmaceuticals, in the market. Today mammalian cell products (“products from cells”), primarily monoclonals, cytokines, recombinant glycoproteins, and, increasingly, vaccines, dominate the biopharmaceutical industry. Moreover, a small number of products consisting of in vitro cultivated cells (“cells as product”) for regenerative medicine have also been introduced in the market. Their efficient production requires comprehensive knowledge of biological as well as biochemical mammalian cell culture fundamentals (e.g., cell characteristics and metabolism, cell line establishment, culture medium optimization) and related engineering principles (e.g., bioreactor design, process scale-up and optimization). In addition, new developments focusing on cell line development, animal-free c- ture media, disposables and the implications of changing processes (multi-purpo- facilities) have to be taken into account. While a number of excellent books treating the basic methods and applications of mammalian cell culture technology have been published, only little attention has been afforded to their engineering aspects. The aim of this book is to make a contribution to closing this gap; it particularly focuses on the interactions between biological and biochemical and engineering principles in processes derived from cell cultures. It is not intended to give a c- prehensive overview of the literature. This has been done extensively elsewhere.