Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.
Please read the tutorial at this link: https://ebookbell.com/faq
We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.
For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.
EbookBell Team
4.1
10 reviewsThe invited papers in this volume provide a detailed examination of Clifford algebras and their significance to geometry, analysis, physics, and engineering. Divided into five parts, the book's first section is devoted to Clifford analysis; here, topics encompass the Morera problem, inverse scattering associated with the Schrödinger equation, discrete Stokes equations in the plane, a symmetric functional calculus, Poincaré series, differential operators in Lipschitz domains, Paley-Wiener theorems and Shannon sampling, Bergman projections, and quaternionic calculus for a class of boundary value problems.
A careful discussion of geometric applications of Clifford algebras follows, with papers on hyper-Hermitian manifolds, spin structures and Clifford bundles, differential forms on conformal manifolds, connection and torsion, Casimir elements and Bochner identities on Riemannian manifolds, Rarita-Schwinger operators, and the interface between noncommutative geometry and physics. In addition, attention is paid to the algebraic and Lie-theoretic applications of Clifford algebras---particularly their intersection with Hopf algebras, Lie algebras and representations, graded algebras, and associated mathematical structures. Symplectic Clifford algebras are also discussed.
Finally, Clifford algebras play a strong role in both physics and engineering. The physics section features an investigation of geometric algebras, chiral Dirac equations, spinors and Fermions, and applications of Clifford algebras in classical mechanics and general relativity. Twistor and octonionic methods, electromagnetism and gravity, elementary particle physics, noncommutative physics, Dirac's equation, quantum spheres, and the Standard Model are among topics considered at length. The section devoted to engineering applications includes papers on twist representations for cycloidal curves, a description of an image space using Cayley-Klein geometry, pose estimation, and implementations of Clifford algeb