logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Clustering For Data Mining A Data Recovery Approach 1st Edition Boris Mirkin

  • SKU: BELL-1309140
Clustering For Data Mining A Data Recovery Approach 1st Edition Boris Mirkin
$ 31.00 $ 45.00 (-31%)

0.0

0 reviews

Clustering For Data Mining A Data Recovery Approach 1st Edition Boris Mirkin instant download after payment.

Publisher: Chapman and Hall/CRC
File Extension: PDF
File size: 4.38 MB
Pages: 278
Author: Boris Mirkin
ISBN: 9781584885344, 1584885343
Language: English
Year: 2005
Edition: 1

Product desciption

Clustering For Data Mining A Data Recovery Approach 1st Edition Boris Mirkin by Boris Mirkin 9781584885344, 1584885343 instant download after payment.

This book gives a smooth, motivated and example-richintroduction to clustering, which is innovative in many aspects.Answers to important questions that are very rarely addressed if addressed at all, are provided.Examples:(a) what to do if the user has no idea of the numberof clusters and/or their location - use what is called intelligent k-means;(b) what to do if the data contain both numeric and categoricalfeatures - use what is called three-step standardization procedure;(c) how to catch anomalous patterns, (d) how to validate clusters, etc.Some of these may be subject to criticism, however some motivation is alwayssupplied, and the results are always reproducible thus testable.The book introduces a numberof non-conventional cluster interpretation aids derived from a datageometry view accepted by the author and based on what is referredthe contribution weights - basically showing those elements of clusterstructures that distinguish clusters from the rest. These contributionweights, applied to categorical data, appear to be highly compatiblewith what statisticians such as A. Quetelet and K. Pearson were developingin the past couple of centuries, which is a highly original and welcomedevelopment. The book reviews a rich set of approaches being accumulatedin such hot areas as text mining and bioinformatics, and shows thatclustering is not just a set of naive methods for data processing butforms an evolving area of data science.I adopted the book as a text for my courses in data mining for bachelorand master degrees.

Related Products