logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Coding Ockhams Razor Lloyd Allison

  • SKU: BELL-7014772
Coding Ockhams Razor Lloyd Allison
$ 31.00 $ 45.00 (-31%)

4.8

94 reviews

Coding Ockhams Razor Lloyd Allison instant download after payment.

Publisher: Springer
File Extension: PDF
File size: 1.8 MB
Pages: 173
Author: Lloyd Allison
ISBN: 9783319764337, 3319764330
Language: English
Year: 2018

Product desciption

Coding Ockhams Razor Lloyd Allison by Lloyd Allison 9783319764337, 3319764330 instant download after payment.

This book explores inductive inference using the minimum message length (MML) principle, a Bayesian method which is a realisation of Ockham's Razor based on information theory. Accompanied by a library of software, the book can assist an applications programmer, student or researcher in the fields of data analysis and machine learning to write computer programs based upon this principle.
MML inference has been around for 50 years and yet only one highly technical book has been written about the subject. The majority of research in the field has been backed by specialised one-off programs but this book includes a library of general MML–based software, in Java. The Java source code is available under the GNU GPL open-source license. The software library is documented using Javadoc which produces extensive cross referenced HTML manual pages. Every probability distribution and statistical model that is described in the book is implemented and documented in the software library. The library may contain a component that directly solves a reader's inference problem, or contain components that can be put together to solve the problem, or provide a standard interface under which a new component can be written to solve the problem.
This book will be of interest to application developers in the fields of machine learning and statistics as well as academics, postdocs, programmers and data scientists. It could also be used by third year or fourth year undergraduate or postgraduate students.

Related Products