logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Compressed Sensing Sparse Filtering 1st Edition Avishy Y Carmi

  • SKU: BELL-4342460
Compressed Sensing Sparse Filtering 1st Edition Avishy Y Carmi
$ 31.00 $ 45.00 (-31%)

0.0

0 reviews

Compressed Sensing Sparse Filtering 1st Edition Avishy Y Carmi instant download after payment.

Publisher: Springer-Verlag Berlin Heidelberg
File Extension: PDF
File size: 7.93 MB
Pages: 502
Author: Avishy Y. Carmi, Lyudmila S. Mihaylova (auth.), Avishy Y. Carmi, Lyudmila Mihaylova, Simon J. Godsill (eds.)
ISBN: 9783642383977, 9783642383984, 3642383971, 364238398X
Language: English
Year: 2014
Edition: 1

Product desciption

Compressed Sensing Sparse Filtering 1st Edition Avishy Y Carmi by Avishy Y. Carmi, Lyudmila S. Mihaylova (auth.), Avishy Y. Carmi, Lyudmila Mihaylova, Simon J. Godsill (eds.) 9783642383977, 9783642383984, 3642383971, 364238398X instant download after payment.

This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals in nature are nearly sparse (or compressible, as they are normally referred to) in some domain, and consequently they can be reconstructed to within high accuracy from far fewer observations than traditionally held to be necessary.

Apart from compressed sensing this book contains other related approaches. Each methodology has its own formalities for dealing with such problems. As an example, in the Bayesian approach, sparseness promoting priors such as Laplace and Cauchy are normally used for penalising improbable model variables, thus promoting low complexity solutions. Compressed sensing techniques and homotopy-type solutions, such as the LASSO, utilise l1-norm penalties for obtaining sparse solutions using fewer observations than conventionally needed. The book emphasizes on the role of sparsity as a machinery for promoting low complexity representations and likewise its connections to variable selection and dimensionality reduction in various engineering problems.

This book is intended for researchers, academics and practitioners with interest in various aspects and applications of sparse signal processing.

Related Products