logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Connective Real Ktheory Of Finite Groups Robert R Bruner J P C Greenlees

  • SKU: BELL-5250908
Connective Real Ktheory Of Finite Groups Robert R Bruner J P C Greenlees
$ 31.00 $ 45.00 (-31%)

4.1

60 reviews

Connective Real Ktheory Of Finite Groups Robert R Bruner J P C Greenlees instant download after payment.

Publisher: American Mathematical Society
File Extension: PDF
File size: 3.62 MB
Pages: 328
Author: Robert R. Bruner, J. P. C. Greenlees
ISBN: 9780821851890, 0821851896
Language: English
Year: 2010

Product desciption

Connective Real Ktheory Of Finite Groups Robert R Bruner J P C Greenlees by Robert R. Bruner, J. P. C. Greenlees 9780821851890, 0821851896 instant download after payment.

This book is about equivariant real and complex topological $K$-theory for finite groups. Its main focus is on the study of real connective $K$-theory including $ko^*(BG)$ as a ring and $ko_*(BG)$ as a module over it. In the course of their study the authors define equivariant versions of connective $KO$-theory and connective $K$-theory with reality, in the sense of Atiyah, which give well-behaved, Noetherian, uncompleted versions of the theory. They prove local cohomology and completion theorems for these theories, giving a means of calculation as well as establishing their formal credentials. In passing from the complex to the real theories in the connective case, the authors describe the known failure of descent and explain how the $\eta$-Bockstein spectral sequence provides an effective substitute. This formal framework allows the authors to give a systematic calculation scheme to quantify the expectation that $ko^*(BG)$ should be a mixture of representation theory and group cohomology. It is characteristic that this starts with $ku^*(BG)$ and then uses the local cohomology theorem and the Bockstein spectral sequence to calculate $ku_*(BG)$, $ko^*(BG)$, and $ko_*(BG)$. To give the skeleton of the answer, the authors provide a theory of $ko$-characteristic classes for representations, with the Pontrjagin classes of quaternionic representations being the most important. Building on the general results, and their previous calculations, the authors spend the bulk of the book giving a large number of detailed calculations for specific groups (cyclic, quaternion, dihedral, $A_4$, and elementary abelian 2-groups). The calculations illustrate the richness of the theory and suggest many further lines of investigation. They have been applied in the verification of the Gromov-Lawson-Rosenberg conjecture for several new classes of finite groups

Related Products