Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.
Please read the tutorial at this link: https://ebookbell.com/faq
We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.
For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.
EbookBell Team
0.0
0 reviews* A demonstration of how abstract convex algorithms work in practice* Convex optimization as a solid foundation for AL & ML
The objective of the book is to assist the reader to acquire Python programming experience of the convex optimization theory, by first reproducing the examples and the figures in the textbook ([book-convex-2004][1]) by Python, and then by tuning the model parameters for further understanding the characteristics of the convex problems and their solutions.
These characteristics include,
• The possible variations and restrictions of the convex problems
• The convergence rate
• The uniqueness of the optimal solution,
• The bounds of the optimal value
• The feasibility and infeasibility of the problems
• The challenges in numerical implementations
The reader will also learn how to implement and verify the algorithm through the convex optimization theory by himself. The jupyter noteboks for all the demos have been in the appendix.
The textbook ([book-convex-2004]) has been popularly used in many open courses about convex optimization, including
* Engineering Everywhere open course,https://see.stanford.edu/Course/EE364A
However, many learners from the convex optimization course have been complaining time is pressing to deep dive into the details of the algorithms. This book will help learners catch the essential cruxes of the convex optimization theory without writing the algorithms from the scratch. Readers are encouraged to use this book as the supplementary material to the course.
The content of the book is organized in a series of demos. Each demo is corresponding to an example in the textbook ([book-convex-2004]). The jupyter notebook implementation for each demo is also provided.
Only the examples in the textbook have been implemented; the implementations for the exercises at the end of each chapter in the textbook haven’t been provided. However, readers are encouraged to reuse the demo codes in the book as the baseline, to implement not only the exerci
…