logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Cooperative Taskoriented Computing Algorithms And Complexity 1st Edition Chryssis Georgiou

  • SKU: BELL-2349944
Cooperative Taskoriented Computing Algorithms And Complexity 1st Edition Chryssis Georgiou
$ 31.00 $ 45.00 (-31%)

4.0

76 reviews

Cooperative Taskoriented Computing Algorithms And Complexity 1st Edition Chryssis Georgiou instant download after payment.

Publisher: Morgan & Claypool Publishers
File Extension: PDF
File size: 1.34 MB
Pages: 169
Author: Chryssis Georgiou, Alexander A. Shvartsman
ISBN: 1608452875
Language: English
Year: 2011
Edition: 1

Product desciption

Cooperative Taskoriented Computing Algorithms And Complexity 1st Edition Chryssis Georgiou by Chryssis Georgiou, Alexander A. Shvartsman 1608452875 instant download after payment.

Cooperative network supercomputing is becoming increasingly popular for harnessing the power of the global Internet computing platform. A typical Internet supercomputer consists of a master computer or server and a large number of computers called workers, performing computation on behalf of the master. Despite the simplicity and benefits of a single master approach, as the scale of such computing environments grows, it becomes unrealistic to assume the existence of the infallible master that is able to coordinate the activities of multitudes of workers. Large-scale distributed systems are inherently dynamic and are subject to perturbations, such as failures of computers and network links, thus it is also necessary to consider fully distributed peer-to-peer solutions. We present a study of cooperative computing with the focus on modeling distributed computing settings, algorithmic techniques enabling one to combine efficiency and fault-tolerance in distributed systems, and the exposition of trade-offs between efficiency and fault-tolerance for robust cooperative computing. The focus of the exposition is on the abstract problem, called Do-All, and formulated in terms of a system of cooperating processors that together need to perform a collection of tasks in the presence of adversity. Our presentation deals with models, algorithmic techniques, and analysis. Our goal is to present the most interesting approaches to algorithm design and analysis leading to many fundamental results in cooperative distributed computing. The algorithms selected for inclusion are among the most efficient that additionally serve as good pedagogical examples. Each chapter concludes with exercises and bibliographic notes that include a wealth of references to related work and relevant advanced results. Table of Contents: Introduction / Distributed Cooperation and Adversity / Paradigms and Techniques / Shared-Memory Algorithms / Message-Passing Algorithms / The Do-All Problem in Other Settings / Bibliography / Authors' Biographies

Related Products