logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Data Cleaning Ihab F Ilyas And Xu Chu

  • SKU: BELL-10849634
Data Cleaning Ihab F Ilyas And Xu Chu
$ 31.00 $ 45.00 (-31%)

4.7

26 reviews

Data Cleaning Ihab F Ilyas And Xu Chu instant download after payment.

Publisher: Association for Computing Machinery
File Extension: PDF
File size: 14.51 MB
Author: Ihab F. Ilyas and Xu Chu
ISBN: 9781450371544, 9781450371551, 145037154X, 1450371558
Language: English
Year: 2019

Product desciption

Data Cleaning Ihab F Ilyas And Xu Chu by Ihab F. Ilyas And Xu Chu 9781450371544, 9781450371551, 145037154X, 1450371558 instant download after payment.

Data quality is one of the most important problems in data management, since dirty data often leads to inaccurate data analytics results and incorrect business decisions. Poor data across businesses and the U.S. government are reported to cost trillions of dollars a year. Multiple surveys show that dirty data is the most common barrier faced by data scientists. Not surprisingly, developing effective and efficient data cleaning solutions is challenging and is rife with deep theoretical and engineering problems. This book is about data cleaning, which is used to refer to all kinds of tasks and activities to detect and repair errors in the data. Rather than focus on a particular data cleaning task, we give an overview of the end-to-end data cleaning process, describing various error detection and repair methods, and attempt to anchor these proposals with multiple taxonomies and views. Specifically, we cover four of the most common and important data cleaning tasks, namely, outlier detection, data transformation, error repair (including imputing missing values), and data deduplication. Furthermore, due to the increasing popularity and applicability of machine learning techniques, we include a chapter that specifically explores how machine learning techniques are used for data cleaning, and how data cleaning is used to improve machine learning models. This book is intended to serve as a useful reference for researchers and practitioners who are interested in the area of data quality and data cleaning. It can also be used as a textbook for a graduate course. Although we aim at covering state-of-the-art algorithms and techniques, we recognize that data cleaning is still an active field of research and therefore provide future directions of research whenever appropriate.

Related Products