logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Data Science For Wind Energy Yu Ding

  • SKU: BELL-10429192
Data Science For Wind Energy Yu Ding
$ 31.00 $ 45.00 (-31%)

4.8

104 reviews

Data Science For Wind Energy Yu Ding instant download after payment.

Publisher: Chapman And Hall/CRC
File Extension: PDF
File size: 62.88 MB
Pages: 425
Author: Yu Ding
ISBN: 9781138590526, 1138590525
Language: English
Year: 2020

Product desciption

Data Science For Wind Energy Yu Ding by Yu Ding 9781138590526, 1138590525 instant download after payment.

Data Science for Wind Energy provides an in-depth discussion on how data science methods can improve decision making for wind energy applications, near-ground wind field analysis and forecast, turbine power curve fitting and performance analysis, turbine reliability assessment, and maintenance optimization for wind turbines and wind farms. A broad set of data science methods covered, including time series models, spatio-temporal analysis, kernel regression, decision trees, kNN, splines, Bayesian inference, and importance sampling. More importantly, the data science methods are described in the context of wind energy applications, with specific wind energy examples and case studies. Features:
- Provides an integral treatment of data science methods and wind energy applications
- Includes specific demonstration of particular data science methods and their use in the context of addressing wind energy needs
- Presents real data, case studies and computer codes from wind energy research and industrial practice
- Covers material based on the author's ten plus years of academic research and insights

Related Products