logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Data Science With Python And Dask 1st Edition Jesse C Daniel

  • SKU: BELL-10653390
Data Science With Python And Dask 1st Edition Jesse C Daniel
$ 31.00 $ 45.00 (-31%)

4.4

102 reviews

Data Science With Python And Dask 1st Edition Jesse C Daniel instant download after payment.

Publisher: Manning Publications
File Extension: PDF
File size: 8.07 MB
Pages: 296
Author: Jesse C. Daniel
ISBN: 9781617295607, 1617295604
Language: English
Year: 2019
Edition: 1

Product desciption

Data Science With Python And Dask 1st Edition Jesse C Daniel by Jesse C. Daniel 9781617295607, 1617295604 instant download after payment.

Dask is a native parallel analytics tool designed to integrate seamlessly with the libraries you're already using, including Pandas, NumPy, and Scikit-Learn. With Dask you can crunch and work with huge datasets, using the tools you already have. And Data Science with Python and Dask is your guide to using Dask for your data projects without changing the way you work!
About the Technology
An efficient data pipeline means everything for the success of a data science project. Dask is a flexible library for parallel computing in Python that makes it easy to build intuitive workflows for ingesting and analyzing large, distributed datasets. Dask provides dynamic task scheduling and parallel collections that extend the functionality of NumPy, Pandas, and Scikit-learn, enabling users to scale their code from a single laptop to a cluster of hundreds of machines with ease.
About the Book
Data Science with Python and Dask teaches you to build scalable projects that can handle massive datasets. After meeting the Dask framework, you'll analyze data in the NYC Parking Ticket database and use DataFrames to streamline your process. Then, you'll create machine learning models using Dask-ML, build interactive visualizations, and build clusters using AWS and Docker.
What's inside
• Working with large, structured and unstructured datasets
• Visualization with Seaborn and Datashader
• Implementing your own algorithms
• Building distributed apps with Dask Distributed
• Packaging and deploying Dask apps
About the Reader
For data scientists and developers with experience using Python and the PyData stack.
About the Author
Jesse Daniel is an experienced Python developer. He taught Python for Data Science at the University of Denver and leads a team of data scientists at a Denver-based media technology company.

Related Products