logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Deep Belief Nets In C And Cuda C Volume 2 Autoencoding In The Complex Domain Timothy Masters

  • SKU: BELL-44018912
Deep Belief Nets In C And Cuda C Volume 2 Autoencoding In The Complex Domain Timothy Masters
$ 31.00 $ 45.00 (-31%)

4.8

64 reviews

Deep Belief Nets In C And Cuda C Volume 2 Autoencoding In The Complex Domain Timothy Masters instant download after payment.

Publisher: Apress
File Extension: PDF
File size: 5.51 MB
Pages: 265
Author: Timothy Masters
ISBN: 9781484236451, 1484236459
Language: English
Year: 2018
Volume: 2

Product desciption

Deep Belief Nets In C And Cuda C Volume 2 Autoencoding In The Complex Domain Timothy Masters by Timothy Masters 9781484236451, 1484236459 instant download after payment.

Discover the essential building blocks of a common and powerful form of deep belief net: the autoencoder. You’ll take this topic beyond current usage by extending it to the complex domain for signal and image processing applications. Deep Belief Nets in C++ and CUDA C: Volume 2 also covers several algorithms for preprocessing time series and image data. These algorithms focus on the creation of complex-domain predictors that are suitable for input to a complex-domain autoencoder. Finally, you’ll learn a method for embedding class information in the input layer of a restricted Boltzmann machine. This facilitates generative display of samples from individual classes rather than the entire data distribution. The ability to see the features that the model has learned for each class separately can be invaluable. At each step this book provides you with intuitive motivation, a summary of the most important equations relevant to the topic, and highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards. What You'll Learn Code for deep learning, neural networks, and AI using C++ and CUDA C Carry out signal preprocessing using simple transformations, Fourier transforms, Morlet wavelets, and more Use the Fourier Transform for image preprocessing Implement autoencoding via activation in the complex domain Work with algorithms for CUDA gradient computation Use the DEEP operating manual Who This Book Is For Those who have at least a basic knowledge of neural networks and some prior programming experience, although some C++ and CUDA C is recommended.

Related Products