logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Deep Learning With Pytorch Lightning Swiftly Build Highperformance Artificial Intelligence Ai Models Using Python Kunal Sawarkar

  • SKU: BELL-42864254
Deep Learning With Pytorch Lightning Swiftly Build Highperformance Artificial Intelligence Ai Models Using Python Kunal Sawarkar
$ 31.00 $ 45.00 (-31%)

4.7

36 reviews

Deep Learning With Pytorch Lightning Swiftly Build Highperformance Artificial Intelligence Ai Models Using Python Kunal Sawarkar instant download after payment.

Publisher: Packt Publishing
File Extension: PDF
File size: 20.98 MB
Pages: 364
Author: Kunal Sawarkar
ISBN: 9781800561618, 180056161X
Language: English
Year: 2022

Product desciption

Deep Learning With Pytorch Lightning Swiftly Build Highperformance Artificial Intelligence Ai Models Using Python Kunal Sawarkar by Kunal Sawarkar 9781800561618, 180056161X instant download after payment.

Build, train, deploy, and scale deep learning models quickly and accurately, improving your productivity using the lightweight PyTorch Wrapper Key Features: Become well-versed with PyTorch Lightning architecture and learn how it can be implemented in various industry domains Speed up your research using PyTorch Lightning by creating new loss functions, networks, and architectures Train and build new algorithms for massive data using distributed training Book Description: PyTorch Lightning lets researchers build their own Deep Learning (DL) models without having to worry about the boilerplate. With the help of this book, you'll be able to maximize productivity for DL projects while ensuring full flexibility from model formulation through to implementation. You'll take a hands-on approach to implementing PyTorch Lightning models to get up to speed in no time. You'll start by learning how to configure PyTorch Lightning on a cloud platform, understand the architectural components, and explore how they are configured to build various industry solutions. Next, you'll build a network and application from scratch and see how you can expand it based on your specific needs, beyond what the framework can provide. The book also demonstrates how to implement out-of-box capabilities to build and train Self-Supervised Learning, semi-supervised learning, and time series models using PyTorch Lightning. As you advance, you'll discover how generative adversarial networks (GANs) work. Finally, you'll work with deployment-ready applications, focusing on faster performance and scaling, model scoring on massive volumes of data, and model debugging. By the end of this PyTorch book, you'll have developed the knowledge and skills necessary to build and deploy your own scalable DL applications using PyTorch Lightning. What You Will Learn: Customize models that are built for different datasets, model architectures, and optimizers Understand how a variety of Deep Learning models from image recognition and time series to GANs, semi-supervised and self-supervised models can be built Use out-of-the-box model architectures and pre-trained models using transfer learning Run and tune DL models in a multi-GPU environment using mixed-mode precisions Explore techniques for model scoring on massive workloads Discover troubleshooting techniques while debugging DL models Who this book is for: This deep learning book is for citizen data scientists and expert data scientists transitioning from other frameworks to PyTorch Lightning. This book will also be useful for deep learning researchers who are just getting started with coding for deep learning models using PyTorch Lightning. Working knowledge of Python programming and an intermediate-level understanding of statistics and deep learning fundamentals is expected.

Related Products