logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Designing Machine Learning Systems Chip Huyen

  • SKU: BELL-35109930
Designing Machine Learning Systems Chip Huyen
$ 35.00 $ 45.00 (-22%)

4.4

72 reviews

Designing Machine Learning Systems Chip Huyen instant download after payment.

Publisher: O'Reilly Media, Inc.
File Extension: PDF
File size: 6.58 MB
Pages: 143
Author: Chip Huyen
ISBN: 9781098107956, 1098107950
Language: English
Year: 2021

Product desciption

Designing Machine Learning Systems Chip Huyen by Chip Huyen 9781098107956, 1098107950 instant download after payment.

Many tutorials show you how to develop ML systems from ideation to deployed models. But with constant changes in tooling, those systems can quickly become outdated. Without an intentional design to hold the components together, these systems will become a technical liability, prone to errors and be quick to fall apart.
In this book, Chip Huyen provides a framework for designing real-world ML systems that are quick to deploy, reliable, scalable, and iterative. These systems have the capacity to learn from new data, improve on past mistakes, and adapt to changing requirements and environments. Youâ??ll learn everything from project scoping, data management, model development, deployment, and infrastructure to team structure and business analysis.
Learn the challenges and requirements of an ML system in production
Build training data with different sampling and labeling methods
Leverage best techniques to engineer features for your ML models to avoid data leakage
Select, develop, debug, and evaluate ML models that are best suit for your tasks
Deploy different types of ML systems for different hardware
Explore major infrastructural choices and hardware designs
Understand the human side of ML, including integrating ML into business, user experience, and team structure

Related Products