logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Enhanced Biological Phosphorus Removal Metabolic Insights And Salinity Effects 1st Edition Welles

  • SKU: BELL-6991952
Enhanced Biological Phosphorus Removal Metabolic Insights And Salinity Effects 1st Edition Welles
$ 31.00 $ 45.00 (-31%)

4.8

84 reviews

Enhanced Biological Phosphorus Removal Metabolic Insights And Salinity Effects 1st Edition Welles instant download after payment.

Publisher: CRC Press
File Extension: PDF
File size: 9.98 MB
Pages: 210
Author: Welles, Laurens
ISBN: 9781138029477, 1138029475
Language: English
Year: 2016
Edition: 1

Product desciption

Enhanced Biological Phosphorus Removal Metabolic Insights And Salinity Effects 1st Edition Welles by Welles, Laurens 9781138029477, 1138029475 instant download after payment.

The Enhanced Biological Phosphorus Removal (EBPR) process is a biological process for efficient phosphate removal from wastewaters through intracellular storage of polyphosphate by Phosphate-Accumulating Organisms (PAO) and subsequent removal through wastage of excess sludge. Although many studies have demonstrated the existence of different PAO clades, the functional differences among these clades and potential implications for the process performance remained unclear. Furthermore, the salinity effects on the EBPR process had not been properly investigated, which is necessary to assess its applicability for the treatment of saline wastewaters.

The first part of the thesis focuses on the functional diversity among PAO clades. It demonstrates significant functional differences in the main characteristics of the anaerobic metabolism of two different PAO clades and provides fundamental insight in the metabolic response of PAO to different influent P/C ratios. In addition, it shows how these functional differences provide competitive advantages to specific PAO clades in a selection study and discusses their potential implications on process performance, in particular for combined biological and chemical systems for nutrient removal and recovery.

The second part of the thesis describes the salinity effects on the metabolism of PAO and their competitors that do not contribute to phosphorus removal; the so-called Glycogen-Accumulating Organisms (GAO). It shows how salinity affects the different metabolic processes (kinetics and stochiometry) of PAO and GAO and provides a model that describes the salinity effects on their kinetic rates. Finally, it discusses the potential implications of sudden saline shocks in wastewater treatment systems that are not regularly exposed to salinity.

Related Products