logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Equivariant Almostarborescent Representations Of Open Simplyconnected 3manifolds A Finiteness Result Valentin Poenaru

  • SKU: BELL-6837798
Equivariant Almostarborescent Representations Of Open Simplyconnected 3manifolds A Finiteness Result Valentin Poenaru
$ 31.00 $ 45.00 (-31%)

5.0

110 reviews

Equivariant Almostarborescent Representations Of Open Simplyconnected 3manifolds A Finiteness Result Valentin Poenaru instant download after payment.

Publisher: American Mathematical Society
File Extension: DJVU
File size: 1.15 MB
Pages: 89
Author: Valentin Poenaru, C. Tanasi
ISBN: 9780821834602, 0821834606
Language: English
Year: 2004

Product desciption

Equivariant Almostarborescent Representations Of Open Simplyconnected 3manifolds A Finiteness Result Valentin Poenaru by Valentin Poenaru, C. Tanasi 9780821834602, 0821834606 instant download after payment.

When one extends the (almost) collapsible pseudo-spine representation theorem for homotopy $3$-spheres [Po3] to open simply connected $3$-manifolds $V^3$, new phenomena appear: at the source of the representation, the set of double points is, generally speaking, no longer closed. We show that at the cost of replacing $V^3$ by $V_h^3 = \{V^3$ with very many holes $\}$, we can always find representations $X^2 \stackrel {f} {\rightarrow} V^3$ with $X^2$ locally finite and almost-arborescent, with $\Psi (f)=\Phi (f)$, with the open regular neighbourhood (the only one which is well-defined here) Nbd$(fX^2)=V^3_h$ and such that on any precompact tight transversal to the set of double lines, we have only finitely many limit points (of the set of double points).Moreover, if $V^3$ is the universal covering space of a closed $3$-manifold, $V^3=\widetilde M^3$, then we can find an $X^2$ with a free $\pi_1M^3$ action and having the equivariance property $f(gx)=gf(x)$, $g\in \pi_1M^3$. Having simultaneously all these properties for $X^2\stackrel{f} {\rightarrow} \widetilde M^3$ is one of the steps in the first author's program for proving that $\pi_1^\infty \widetilde M^3=[UNK]0$, [Po11, Po12]. Achieving equivariance is far from being straightforward, since $X^2$ is gotten starting from a tree of fundamental domains on which $\pi_1M^3$ cannot, generally speaking, act freely. So, in this paper we have both a representation theorem for general ($\pi_1=0$) $V^3$'s and a harder equivariant representation theorem for $\widetilde M^3$ (with $gfX^2=fX^2, \, g\in\pi_1M^3$), the proof of which is not a specialization of the first, 'easier' result.But, finiteness is achieved in both contexts. In a certain sense, this finiteness is a best possible result, since if the set of limit points in question is $\emptyset$ (i.e. if the set of double points is closed), then $\pi_1^\infty V_h^3$ (which is always equal to $\pi_1^\infty V^3$) is zero. In [PoTa2] it was also shown that when we insist on representing $V^3$ itself, rather than $V_h^3$, and if $V^3$ is wild ($\pi_1^\infty\not =0$), then the transversal structure of the set of double lines can exhibit chaotic dynamical behavior. Our finiteness theorem avoids chaos at the cost of a lot of redundancy (the same double point $(x, y)$ can be reached in many distinct ways starting from the singularities)

Related Products