logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Explainable And Interpretable Models In Computer Vision And Machine Learning 1st Ed Hugo Jair Escalante

  • SKU: BELL-7324910
Explainable And Interpretable Models In Computer Vision And Machine Learning 1st Ed Hugo Jair Escalante
$ 31.00 $ 45.00 (-31%)

4.4

62 reviews

Explainable And Interpretable Models In Computer Vision And Machine Learning 1st Ed Hugo Jair Escalante instant download after payment.

Publisher: Springer International Publishing
File Extension: PDF
File size: 8.99 MB
Author: Hugo Jair Escalante, Sergio Escalera, Isabelle Guyon, Xavier Baró, Yağmur Güçlütürk, Umut Güçlü, Marcel van Gerven
ISBN: 9783319981307, 9783319981314, 3319981307, 3319981315
Language: English
Year: 2018
Edition: 1st ed.

Product desciption

Explainable And Interpretable Models In Computer Vision And Machine Learning 1st Ed Hugo Jair Escalante by Hugo Jair Escalante, Sergio Escalera, Isabelle Guyon, Xavier Baró, Yağmur Güçlütürk, Umut Güçlü, Marcel Van Gerven 9783319981307, 9783319981314, 3319981307, 3319981315 instant download after payment.

This book compiles leading research on the development of explainable and interpretable machine learning methods in the context of computer vision and machine learning.

Research progress in computer vision and pattern recognition has led to a variety of modeling techniques with almost human-like performance. Although these models have obtained astounding results, they are limited in their explainability and interpretability: what is the rationale behind the decision made? what in the model structure explains its functioning? Hence, while good performance is a critical required characteristic for learning machines, explainability and interpretability capabilities are needed to take learning machines to the next step to include them in decision support systems involving human supervision.

This book, written by leading international researchers, addresses key topics of explainability and interpretability, including the following:

· Evaluation and Generalization in Interpretable Machine Learning

· Explanation Methods in Deep Learning

· Learning Functional Causal Models with Generative Neural Networks

· Learning Interpreatable Rules for Multi-Label Classification

· Structuring Neural Networks for More Explainable Predictions

· Generating Post Hoc Rationales of Deep Visual Classification Decisions

· Ensembling Visual Explanations

· Explainable Deep Driving by Visualizing Causal Attention

· Interdisciplinary Perspective on Algorithmic Job Candidate Search

· Multimodal Personality Trait Analysis for Explainable Modeling of Job Interview Decisions

· Inherent Explainability Pattern Theory-based Video Event Interpretations


Related Products