Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.
Please read the tutorial at this link: https://ebookbell.com/faq
We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.
For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.
EbookBell Team
4.7
36 reviewsIn this unique book, written in a reasonably self-contained manner, the theory of linear connections is systematically presented as a natural part of differential calculus over commutative algebras. This not only makes easy and natural numerous generalizations of the classical theory and reveals various new aspects of it, but also shows in a clear and transparent manner the intrinsic structure of the associated differential calculus. The notion of a "fat manifold" introduced here then allows the reader to build a well-working analogy of this "connection calculus" with the usual one.
Contents:Elements of Differential Calculus over Commutative Algebras:; Algebraic Tools; Smooth Manifolds; Vector Bundles; Vector Fields; Differential Forms; Lie Derivative; Basic Differential Calculus on Fat Manifolds:; Basic Definitions; The Lie Algebra of Der-operators; Fat Vector Fields; Fat Fields and Vector Fields on the Total Space; Induced Der-operators; Fat Trajectories; Inner Structures; Linear Connections:; Basic Definitions and Examples; Parallel Translation; Curvature; Operations with Linear Connections; Linear Connections and Inner Structures; Covariant Differential:; Fat de Rham Complexes; Covariant Differential; Compatible Linear Connections; Linear Connections Along Fat Maps; Covariant Lie Derivative; Gauge/Fat Structures and Linear Connections; Cohomological Aspects of Linear Connections:; An Introductory Example; Cohomology of Flat Linear Connections; Maxwell's Equations; Homotopy Formula for Linear Connections; Characteristic Classes.