Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.
Please read the tutorial at this link: https://ebookbell.com/faq
We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.
For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.
EbookBell Team
4.3
48 reviewsFinite Element Methods with B-Splines describes new weighted approximation techniques, combining the computational advantages of B-splines and standard finite elements. In particular, no grid generation is necessary, which eliminates a difficult and often time-consuming preprocessing step. The meshless methods are very efficient and yield highly accurate solutions with relatively few parameters. This is illustrated for typical boundary value problems in fluid flow, heat conduction, and elasticity.
Topics discussed by the author include basic finite element theory, algorithms for B-splines, weighted bases, stability and error estimates, multigrid techniques, applications, and numerical examples. The text is essentially self-contained and easily accessible to graduate students in mathematics, engineering, and computer sciences. The new concepts are also of interest to academic researchers and to scientists in industry who are developing finite element software. Some basic facts on functional analysis and partial differential equations, which are required, are listed in the appendix.
Contents Preface; Chapter 1: Introduction; Chapter 2: Basic Finite Element Concepts; Chapter 3: B-Splines; Chapter 4: Finite Element Bases; Chapter 5: Approximation with Weighted Splines; Chapter 6: Boundary Value Problems; Chapter 7: Multigrid Methods; Chapter 8: Implementation; Appendix; Notation and Symbols; Bibliography; Inde