logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Fluid Dynamics Part 4 Hydrodynamic Stability Theory Anatoly Ruban

  • SKU: BELL-54543878
Fluid Dynamics Part 4 Hydrodynamic Stability Theory Anatoly Ruban
$ 31.00 $ 45.00 (-31%)

5.0

50 reviews

Fluid Dynamics Part 4 Hydrodynamic Stability Theory Anatoly Ruban instant download after payment.

Publisher: Oxford University Press
File Extension: PDF
File size: 8.73 MB
Pages: 369
Author: Anatoly Ruban, Jitesh Gajjar, Andrew Walton
ISBN: 9780198869948, 0198869940
Language: English
Year: 2023
Volume: 4

Product desciption

Fluid Dynamics Part 4 Hydrodynamic Stability Theory Anatoly Ruban by Anatoly Ruban, Jitesh Gajjar, Andrew Walton 9780198869948, 0198869940 instant download after payment.

This is the fourth volume in a four-part series on fluid dynamics: Part 1. Classical Fluid Dynamics Part 2. Asymptotic Problems of Fluid Dynamics Part 3. Boundary Layers Part 4. Hydrodynamic Stability Theory The series is designed to give a comprehensive and coherent description of fluid dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture course, and then progressing through more advanced material up to the level of modern research in the field. Part 4 is devoted to hydrodynamic stability theory which aims at predicting the conditions under which the laminar state of a flow turns into a turbulent state. The phenomenon of laminar-turbulent transition remains one of the main challenges of modern physics. The resolution of this problem is important not only from a theoretical viewpoint but also for practical applications. For instance, in the flow past a passenger aircraft wing, the laminar-turbulent transition causes a fivefold increase in the viscous drag. The book starts with the classical results of the theory which include the global stability analysis followed by the derivation of the Orr-Sommerfeld equation. The properties of this equation are discussed using, as examples, plane Poiseuille flow and the Blasius boundary layer. In addition, we discuss 'inviscid flow' instability governed by the Rayleigh equation, Kelvin-Helmholtz instability, crossflow instability, and centrifugal instability, taking the form of Taylor-Görtler vortices. However, in this presentation our main attention regards recent developments in the theory. These include linear and nonlinear critical layer theory, the theory of receptivity of the boundary layer to external perturbations, weakly nonlinear stability theory of Landau and Stuart, and vortex-wave interaction theory. The latter allows us to describe self-sustaining nonlinear perturbations within a viscous fluid.

Related Products