Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.
Please read the tutorial at this link: https://ebookbell.com/faq
We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.
For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.
EbookBell Team
4.7
36 reviewsHow deep we can see inside Nature's smallest secrets? Will it be possible some day in the near future to investigate living structures at atomic level? This area of study is very interdisciplinary, since it applies the principles and the techniques of biology, physics, chemistry, mathematics, and engineering to elucidate the structures of biological macromolecules, of supramolecular structures, organelles, and cells. This book offers updated information on how much information we are able to obtain in the exploration of the inner details of biological specimens in their native structure and composition.
The book deals with the implementation of laser beam and stage scanning systems incorporating confocal optics or multiphoton microscopy; the advent of new electro-optical detectors with great sensitivity, linearity, and dynamic range; the possibility of 2D fast image enhancement, reconstruction, restoration, analysis and 3D display, and the application of luminescence techniques (FLIMT, FRET combined with the use of quantum dots), which gives the possibility to investigate the chemical and molecular spatio-temporal organization of life processes; Electron Microscopy and Scanning Force Microscopy (SFM), are also presented, which has opened completely new perspectives for analyzing the surface topography of biological matter in its aqueous environment at a resolution comparable to that achieved by EM.