logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Geometric Invariant Theory Over The Real And Complex Numbers Wallach

  • SKU: BELL-6753612
Geometric Invariant Theory Over The Real And Complex Numbers Wallach
$ 31.00 $ 45.00 (-31%)

4.8

14 reviews

Geometric Invariant Theory Over The Real And Complex Numbers Wallach instant download after payment.

Publisher: Springer
File Extension: PDF
File size: 2.24 MB
Pages: 190
Author: Wallach, Nolan R
ISBN: 9783319659053, 9783319659077, 3319659057, 3319659073
Language: English
Year: 2017

Product desciption

Geometric Invariant Theory Over The Real And Complex Numbers Wallach by Wallach, Nolan R 9783319659053, 9783319659077, 3319659057, 3319659073 instant download after payment.

Geometric Invariant Theory (GIT) is developed in this text within the context of algebraic geometry over the real and complex numbers. This sophisticated topic is elegantly presented with enough background theory included to make the text accessible to advanced graduate students in mathematics and physics with diverse backgrounds in algebraic and differential geometry. Throughout the book, examples are emphasized. Exercises add to the reader’s understanding of the material; most are enhanced with hints.

The exposition is divided into two parts. The first part, ‘Background Theory’, is organized as a reference for the rest of the book. It contains two chapters developing material in complex and real algebraic geometry and algebraic groups that are difficult to find in the literature. Chapter 1 emphasizes the relationship between the Zariski topology and the canonical Hausdorff topology of an algebraic variety over the complex numbers. Chapter 2 develops the interaction between Lie groups and algebraic groups. Part 2, ‘Geometric Invariant Theory’ consists of three chapters (3–5). Chapter 3 centers on the Hilbert–Mumford theorem and contains a complete development of the Kempf–Ness theorem and Vindberg’s theory. Chapter 4 studies the orbit structure of a reductive algebraic group on a projective variety emphasizing Kostant’s theory. The final chapter studies the extension of classical invariant theory to products of classical groups emphasizing recent applications of the theory to physics.

Related Products