logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Graph Algorithms For Data Science Meap V08 Tomaz Bratanic

  • SKU: BELL-50883426
Graph Algorithms For Data Science Meap V08 Tomaz Bratanic
$ 31.00 $ 45.00 (-31%)

4.3

18 reviews

Graph Algorithms For Data Science Meap V08 Tomaz Bratanic instant download after payment.

Publisher: Manning Publications
File Extension: EPUB
File size: 10.44 MB
Pages: 412
Author: Tomaz Bratanic
Language: English
Year: 2023

Product desciption

Graph Algorithms For Data Science Meap V08 Tomaz Bratanic by Tomaz Bratanic instant download after payment.

Graphs are the natural way to understand connected data. This book explores the most important algorithms and techniques for graphs in data science, with practical examples and concrete advice on implementation and deployment.
In Graph Algorithms for Data Science you will learn:
Labeled-property graph modeling
Constructing a graph from structured data such as CSV or SQL
NLP techniques to construct a graph from unstructured data
Cypher query language syntax to manipulate data and extract insights
Social network analysis algorithms like PageRank and community detection
How to translate graph structure to a ML model input with node embedding models
Using graph features in node classification and link prediction workflows
Graph Algorithms for Data Science is a hands-on guide to working with graph-based data in applications like machine learning, fraud detection, and business data analysis. It’s filled with fascinating and fun projects, demonstrating the ins-and-outs of graphs. You’ll gain practical skills by analyzing Twitter, building graphs with NLP techniques, and much more. You don’t need any graph experience to start benefiting from this insightful guide. These powerful graph algorithms are explained in clear, jargon-free text and illustrations that makes them easy to apply to your own projects.
about the technology
Graphs reveal the relationships in your data. Tracking these interlinking connections reveals new insights and influences and lets you analyze each data point as part of a larger whole. This interconnected data is perfect for machine learning, as well as analyzing social networks, communities, and even product recommendations.
about the book
Graph Algorithms for Data Science teaches you how to construct graphs from both structured and unstructured data. You’ll learn how the flexible Cypher query language can be used to easily manipulate graph structures, and extract amazing insights. The book explores common and useful graph algorithms like PageRank and community detection/clustering algorithms. Each new algorithm you learn is instantly put into action to complete a hands-on data project, including modeling a social network! Finally, you’ll learn how to utilize graphs to upgrade your machine learning, including utilizing node embedding models and graph neural networks.
about the reader
For data scientists who know the basics of Machine Learning. Examples use the Cypher query language, which is explained in the book.
about the author
Tomaz Bratanic is a network scientist at heart, working at the intersection of graphs and machine learning. He has applied these graph techniques to projects in various domains including fraud detection, biomedicine, business-oriented analytics, and recommendations.

Related Products