logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Greens Function Integral Equation Methods In Nanooptics Hardcover Thomas M Sndergaard

  • SKU: BELL-10133066
Greens Function Integral Equation Methods In Nanooptics Hardcover Thomas M Sndergaard
$ 31.00 $ 45.00 (-31%)

4.3

38 reviews

Greens Function Integral Equation Methods In Nanooptics Hardcover Thomas M Sndergaard instant download after payment.

Publisher: CRC Press
File Extension: PDF
File size: 20.05 MB
Pages: 418
Author: Thomas M Sndergaard
ISBN: 9780815365969, 0815365969
Language: English
Year: 2019
Edition: Hardcover

Product desciption

Greens Function Integral Equation Methods In Nanooptics Hardcover Thomas M Sndergaard by Thomas M Sndergaard 9780815365969, 0815365969 instant download after payment.

This book gives a comprehensive introduction to Green's function integral equation methods (GFIEMs) for scattering problems in the field of nano-optics. First, a brief review is given of the most important theoretical foundations from electromagnetics, optics, and scattering theory, including theory of waveguides, Fresnel reflection, and scattering, extinction, and absorption cross sections. This is followed by a presentation of different types of GFIEMs of increasing complexity for one-, two-, and three-dimensional scattering problems. In GFIEMs, the electromagnetic field at any position is directly related to the field at either the inside or the surface of a scattering object placed in a reference structure. The properties of the reference structure, and radiating or periodic boundary conditions, are automatically taken care of via the choice of Green's function. This book discusses in detail how to solve the integral equations using either simple or higher-order finite-element-based methods; how to calculate the relevant Green's function for different reference structures and choices of boundary conditions; and how to calculate near-fields, optical cross sections, and the power emitted by a local source. Solution strategies for large structures are discussed based on either transfer-matrix-approaches or the conjugate gradient algorithm combined with the Fast Fourier Transform. Special attention is given to reducing the computational problem for three-dimensional structures with cylindrical symmetry by using cylindrical harmonic expansions.
Each presented method is accompanied by examples from nano-optics, including: resonant metal nano-particles placed in a homogeneous medium or on a surface or waveguide; a microstructured gradient-index-lens; the Purcell effect for an emitter in a photonic crystal; the excitation of surface plasmon polaritons by second-harmonic generation in a polymer fiber placed on a thin metal film; and anti-reflective, broadband absorbing or resonant surface microstructures. Each presented method is also accompanied by guidelines for software implementation and exercises.
Features
Comprehensive introduction to Green's function integral equation methods for scattering problems in the field of nano-optics
Detailed explanation of how to discretize and solve integral equations using simple and higher-order finite-element approaches
Solution strategies for large structures
Guidelines for software implementation and exercises
Broad selection of examples of scattering problems in nano-optics
About the Author
Dr. Thomas Søndergaard is currently an Associate Professor in Nano Optics, Aalborg University, Denmark. His areas of expertise include numerical methods for theoretical analysis of electromagnetic fields in micro- and nanostructures. Plasmonics: waveguiding, optical antennas, resonators and sensors based on a type of electromagnetic surface wave at metal-dielectric interfaces known as Surface Plasmon Polaritons. Photonic crystals: wavelength-scale periodic structures in which light with certain wavelengths cannot propagate, similar to electrons with certain energies not being able to progagate in semiconductors, and how this can be exploited for e.g. designing optical waveguides and cavities. Green’s function integral equation methods. Dr. Sondergaard has been awarded The Danish Independent Research Councils' Young Researcher's Award (2006) and The Danish Optical Society Award (2008). He is a board member of the Danish Optical Society and reviewer of 15-20 papers per year for such journals as Physical Review B, Physical Review Letters, Applied Physics Letters, Optics Express, IEEE Journal of Quantum Electronics, IEEE Journal of Lightwave Technology, Optics Communications, Physica status solidi (b), Nature Photonics, Optics Letters, and Journal of the Optical Society of America A/B. Dr. Sondergaard has also been published 84 papers in peerreviewed journals and holds three patents.

Related Products