logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Guide To Data Privacy Models Technologies Solutions Vicen Torra

  • SKU: BELL-47165900
Guide To Data Privacy Models Technologies Solutions Vicen Torra
$ 31.00 $ 45.00 (-31%)

0.0

0 reviews

Guide To Data Privacy Models Technologies Solutions Vicen Torra instant download after payment.

Publisher: Springer
File Extension: PDF
File size: 6.08 MB
Pages: 322
Author: Vicenç Torra
ISBN: 9783031128363, 3031128362
Language: English
Year: 2022

Product desciption

Guide To Data Privacy Models Technologies Solutions Vicen Torra by Vicenç Torra 9783031128363, 3031128362 instant download after payment.

Data privacy technologies are essential for implementing information systems with privacy by design.

Privacy technologies clearly are needed for ensuring that data does not lead to disclosure, but also that statistics or even data-driven machine learning models do not lead to disclosure.  For example, can a deep-learning model be attacked to discover that sensitive data has been used for its training?  This accessible textbook presents privacy models, computational definitions of privacy, and methods to implement them. Additionally, the book explains and gives plentiful examples of how to implement―among other models―differential privacy, k-anonymity, and secure multiparty computation.

Topics and features:

  • Provides integrated presentation of data privacy (including tools from statistical disclosure control, privacy-preserving data mining, and privacy for communications)
  • Discusses privacy requirements and tools for different types of scenarios, including privacy for data, for computations, and for users
  • Offers characterization of privacy models, comparing their differences, advantages, and disadvantages
  • Describes some of the most relevant algorithms to implement privacy models
  • Includes examples of data protection mechanisms

This unique textbook/guide contains numerous examples and succinctly and comprehensively gathers the relevant information. As such, it will be eminently suitable for undergraduate and graduate students interested in data privacy, as well as professionals wanting a concise overview.

Vicenç Torra is Professor with the Department of Computing Science at Umeå University, Umeå, Sweden.

Related Products