logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Hands-On Big Data Analytics with Pyspark Colibri Digital Rudy Lai

  • SKU: BELL-52956852
Hands-On Big Data Analytics with Pyspark Colibri Digital Rudy Lai
$ 31.00 $ 45.00 (-31%)

4.8

34 reviews

Hands-On Big Data Analytics with Pyspark Colibri Digital Rudy Lai instant download after payment.

Publisher: Packt Publishing
File Extension: PDF
File size: 6.42 MB
Pages: 184
Author: Colibri Digital, Rudy Lai, Bartlomiej Potaczek
ISBN: 9781838644130, 183864413X
Language: English
Year: 2019

Product desciption

Hands-On Big Data Analytics with Pyspark Colibri Digital Rudy Lai by Colibri Digital, Rudy Lai, Bartlomiej Potaczek 9781838644130, 183864413X instant download after payment.

Use PySpark to easily crush messy data at-scale and discover proven techniques to create testable, immutable, and easily parallelizable Spark jobs Key Features Work with large amounts of agile data using distributed datasets and in-memory caching Source data from all popular data hosting platforms, such as HDFS, Hive, JSON, and S3 Employ the easy-to-use PySpark API to deploy big data Analytics for production Book Description Apache Spark is an open source parallel-processing framework that has been around for quite some time now. One of the many uses of Apache Spark is for data analytics applications across clustered computers. In this book, you will not only learn how to use Spark and the Python API to create high-performance analytics with big data, but also discover techniques for testing, immunizing, and parallelizing Spark jobs. You will learn how to source data from all popular data hosting platforms, including HDFS, Hive, JSON, and S3, and deal with large datasets with PySpark to gain practical big data experience. This book will help you work on prototypes on local machines and subsequently go on to handle messy data in production and at scale. This book covers installing and setting up PySpark, RDD operations, big data cleaning and wrangling, and aggregating and summarizing data into useful reports. You will also learn how to implement some practical and proven techniques to improve certain aspects of programming and administration in Apache Spark. By the end of the book, you will be able to build big data analytical solutions using the various PySpark offerings and also optimize them effectively. What you will learn Get practical big data experience while working on messy datasets Analyze patterns with Spark SQL to improve your business intelligence Use PySpark's interactive shell to speed up development time Create highly concurrent Spark programs by leveraging immutability Discover ways to avoid the most expensive operation in the Spark API: the shuffle operation Re-design your jobs to use reduceByKey instead of groupBy Create robust processing pipelines by testing Apache Spark jobs Who this book is for This book is for developers, data scientists, business analysts, or anyone who needs to reliably analyze large amounts of large-scale, real-world data. Whether you're tasked with creating your company's business intelligence function or creating great data platforms for your machine learning models, or are looking to use code to magnify the impact of your business, this book is for you.

Related Products