logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Handson Deep Learning With R A Practical Guide To Designing Building And Improving Neural Network Models Using R Michael Pawlus

  • SKU: BELL-11116992
Handson Deep Learning With R A Practical Guide To Designing Building And Improving Neural Network Models Using R Michael Pawlus
$ 35.00 $ 45.00 (-22%)

4.8

104 reviews

Handson Deep Learning With R A Practical Guide To Designing Building And Improving Neural Network Models Using R Michael Pawlus instant download after payment.

Publisher: Packt Publishing
File Extension: PDF
File size: 13.48 MB
Pages: 330
Author: Michael Pawlus, Rodger Devine
ISBN: 9781788996839, 1788996836
Language: English
Year: 2020

Product desciption

Handson Deep Learning With R A Practical Guide To Designing Building And Improving Neural Network Models Using R Michael Pawlus by Michael Pawlus, Rodger Devine 9781788996839, 1788996836 instant download after payment.

Explore and implement deep learning to solve various real-world problems using modern R libraries such as TensorFlow, MXNet, H2O, and Deepnet

Key Features
  • Understand deep learning algorithms and architectures using R and determine which algorithm is best suited for a specific problem
  • Improve models using parameter tuning, feature engineering, and ensembling
  • Apply advanced neural network models such as deep autoencoders and generative adversarial networks (GANs) across different domains
Book Description

Deep learning enables efficient and accurate learning from a massive amount of data. This book will help you overcome a number of challenges using various deep learning algorithms and architectures with R programming.

This book starts with a brief overview of machine learning and deep learning and how to build your first neural network. You'll understand the architecture of various deep learning algorithms and their applicable fields, learn how to build deep learning models, optimize hyperparameters, and evaluate model performance. Various deep learning applications in image processing, natural language processing (NLP), recommendation systems, and predictive analytics will also be covered. Later chapters will show you how to tackle recognition problems such as image recognition and signal detection, programmatically summarize documents, conduct topic modeling, and forecast stock market prices. Toward the end of the book, you will learn the common applications of GANs and how to build a face generation model using them. Finally, you'll get to grips with using reinforcement learning and deep reinforcement learning to solve various real-world problems.

By the end of this deep learning book, you will be able to build and deploy your own deep learning applications using appropriate frameworks and algorithms.

What you will learn
  • Design a feedforward neural network to see how the activation function computes an output
  • Create an image recognition model using convolutional neural networks (CNNs)
  • Prepare data, decide hidden layers and neurons and train your model with the backpropagation algorithm
  • Apply text cleaning techniques to remove uninformative text using NLP
  • Build, train, and evaluate a GAN model for face generation
  • Understand the concept and implementation of reinforcement learning in R
Who this book is for

This book is for data scientists, machine learning engineers, and deep learning developers who are familiar with machine learning and are looking to enhance their knowledge of deep learning using practical examples. Anyone interested in increasing the efficiency of their machine learning applications and exploring various options in R will also find this book useful. Basic knowledge of machine learning techniques and working knowledge of the R programming language is expected.

Table of Contents
  1. Machine Learning Basics
  2. Setting Up R for Deep Learning
  3. Artificial Neural Networks
  4. Convolutional Neural Networks for Image Recognition
  5. Multilayer Perceptron Neural Networks for Signal Detection
  6. Neural Collaborative Filtering Using Embeddings
  7. Deep Learning for Natural Language Processing
  8. Long Short-Term Memory Networks for Stock Forecast
  9. Generative Adversarial Networks for Face Generation
  10. Reinforcement Learning for gaming
  11. Deep Q Learning for Maze Solving

Related Products