logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Handson Gpuaccelerated Computer Vision With Opencv And Cuda Bhaumik Vaidya

  • SKU: BELL-11077104
Handson Gpuaccelerated Computer Vision With Opencv And Cuda Bhaumik Vaidya
$ 31.00 $ 45.00 (-31%)

4.0

56 reviews

Handson Gpuaccelerated Computer Vision With Opencv And Cuda Bhaumik Vaidya instant download after payment.

Publisher: Packt Publishing Ltd
File Extension: PDF
File size: 11.51 MB
Pages: 452
Author: Bhaumik Vaidya
ISBN: 9781789342406, 1789342406
Language: English
Year: 2019

Product desciption

Handson Gpuaccelerated Computer Vision With Opencv And Cuda Bhaumik Vaidya by Bhaumik Vaidya 9781789342406, 1789342406 instant download after payment.

Explore GPU-enabled programmable environment for machine learning, scientific applications, and gaming using PuCUDA, PyOpenGL, and Anaconda Accelerate Key Features Understand effective synchronization strategies for faster processing using GPUs Write parallel processing scripts with PyCuda and PyOpenCL Learn to use the CUDA libraries like CuDNN for deep learning on GPUs Book Description GPUs are proving to be excellent general purpose-parallel computing solutions for high performance tasks such as deep learning and scientific computing. This book will be your guide to getting started with GPU computing. It will start with introducing GPU computing and explain the architecture and programming models for GPUs. You will learn, by example, how to perform GPU programming with Python, and you’ll look at using integrations such as PyCUDA, PyOpenCL, CuPy and Numba with Anaconda for various tasks such as machine learning and data mining. Going further, you will get to grips with GPU work flows, management, and deployment using modern containerization solutions. Toward the end of the book, you will get familiar with the principles of distributed computing for training machine learning models and enhancing efficiency and performance. By the end of this book, you will be able to set up a GPU ecosystem for running complex applications and data models that demand great processing capabilities, and be able to efficiently manage memory to compute your application effectively and quickly. What you will learn Utilize Python libraries and frameworks for GPU acceleration Set up a GPU-enabled programmable machine learning environment on your system with Anaconda Deploy your machine learning system on cloud containers with illustrated examples Explore PyCUDA and PyOpenCL and compare them with platforms such as CUDA, OpenCL and ROCm. Perform data mining tasks with machine learning models on GPUs Extend your knowledge of GPU computing in scientific applications Who this book is for Data Scientist, Machine Learning enthusiasts and professionals who wants to get started with GPU computation and perform the complex tasks with low-latency. Intermediate knowledge of Python programming is assumed.

Related Products