logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Handson Machine Learning With R Brad Boehmke Brandon M Greenwell

  • SKU: BELL-11115732
Handson Machine Learning With R Brad Boehmke Brandon M Greenwell
$ 31.00 $ 45.00 (-31%)

4.8

74 reviews

Handson Machine Learning With R Brad Boehmke Brandon M Greenwell instant download after payment.

Publisher: CRC Press
File Extension: PDF
File size: 35.14 MB
Author: Brad Boehmke; Brandon M. Greenwell
ISBN: 9781138495685, 1138495689
Language: English
Year: 2020

Product desciption

Handson Machine Learning With R Brad Boehmke Brandon M Greenwell by Brad Boehmke; Brandon M. Greenwell 9781138495685, 1138495689 instant download after payment.

Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today's most popular machine learning methods. This book serves as a practitioner's guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. 
Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R's machine learning stack and be able to implement a systematic approach for producing high quality modeling results.
Features:
Offers a practical and applied introduction to the most popular machine learning methods.
Takes readers through the entire modeling process; from data prep to hyperparameter tuning, model evaluation, and interpretation.
Introduces readers to a wide variety of packages that make up R's machine learning stack.
Uses a hands-on approach and real world data.

Related Products