logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Handson Reinforcement Learning With R Giuseppe Ciaburro

  • SKU: BELL-170547214
Handson Reinforcement Learning With R Giuseppe Ciaburro
$ 31.00 $ 45.00 (-31%)

4.7

16 reviews

Handson Reinforcement Learning With R Giuseppe Ciaburro instant download after payment.

Publisher: Packt Publishing
File Extension: EPUB
File size: 17.2 MB
Pages: 500
Author: Giuseppe Ciaburro
Language: English
Year: 2019

Product desciption

Handson Reinforcement Learning With R Giuseppe Ciaburro by Giuseppe Ciaburro instant download after payment.

Implement key reinforcement learning algorithms and techniques using different R packages such as the Markov chain, MDP toolbox, contextual, and OpenAI Gym

Key Features

  • Explore the design principles of reinforcement learning and deep reinforcement learning models
  • Use dynamic programming to solve design issues related to building a self-learning system
  • Learn how to systematically implement reinforcement learning algorithms

    Book Description

    Reinforcement learning (RL) is an integral part of machine learning (ML), and is used to train algorithms. With this book, you'll learn how to implement reinforcement learning with R, exploring practical examples such as using tabular Q-learning to control robots.

    You'll begin by learning the basic RL concepts, covering the agent-environment interface, Markov Decision Processes (MDPs), and policy gradient methods. You'll then use R's libraries to develop a model based on Markov chains. You will also...

  • Related Products