logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Hereditary Noetherian Prime Rings And Idealizers Lawrence S Levy

  • SKU: BELL-5251462
Hereditary Noetherian Prime Rings And Idealizers Lawrence S Levy
$ 31.00 $ 45.00 (-31%)

0.0

0 reviews

Hereditary Noetherian Prime Rings And Idealizers Lawrence S Levy instant download after payment.

Publisher: American Mathematical Society
File Extension: PDF
File size: 11.56 MB
Pages: 234
Author: Lawrence S. Levy, J. Chris Robson
ISBN: 9780821853504, 0821853503
Language: English
Year: 2011

Product desciption

Hereditary Noetherian Prime Rings And Idealizers Lawrence S Levy by Lawrence S. Levy, J. Chris Robson 9780821853504, 0821853503 instant download after payment.

The direct sum behaviour of its projective modules is a fundamental property of any ring. Hereditary Noetherian prime rings are perhaps the only noncommutative Noetherian rings for which this direct sum behaviour (for both finitely and infinitely generated projective modules) is well-understood, yet highly nontrivial. This book surveys material previously available only in the research literature. It provides a re-worked and simplified account, with improved clarity, fresh insights and many original results about finite length modules, injective modules and projective modules. It culminates in the authors' surprisingly complete structure theorem for projective modules which involves two independent additive invariants: genus and Steinitz class. Several applications demonstrate its utility. The theory, extending the well-known module theory of commutative Dedekind domains and of hereditary orders, develops via a detailed study of simple modules. This relies upon the substantial account of idealizer subrings which forms the first part of the book and provides a useful general construction tool for interesting examples. The book assumes some knowledge of noncommutative Noetherian rings, including Goldie's theorem. Beyond that, it is largely self-contained, thanks to the appendix which provides succinct accounts of Artinian serial rings and, for arbitrary rings, results about lifting direct sum decompositions from finite length images of projective modules. The appendix also describes some open problems. The history of the topics is surveyed at appropriate points

Related Products