logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

How Many Zeroes Counting Solutions Of Systems Of Polynomials Via Toric Geometry At Infinity 1st Edition Pinaki Mondal

  • SKU: BELL-36143328
How Many Zeroes Counting Solutions Of Systems Of Polynomials Via Toric Geometry At Infinity 1st Edition Pinaki Mondal
$ 31.00 $ 45.00 (-31%)

4.1

70 reviews

How Many Zeroes Counting Solutions Of Systems Of Polynomials Via Toric Geometry At Infinity 1st Edition Pinaki Mondal instant download after payment.

Publisher: Springer, Springer Nature Switzerland AG
File Extension: PDF
File size: 9.09 MB
Pages: 358
Author: Pinaki Mondal
ISBN: 9783030751746, 9783030751739, 3030751732, 3030751740
Language: English
Year: 2021
Edition: 1
Volume: 2

Product desciption

How Many Zeroes Counting Solutions Of Systems Of Polynomials Via Toric Geometry At Infinity 1st Edition Pinaki Mondal by Pinaki Mondal 9783030751746, 9783030751739, 3030751732, 3030751740 instant download after payment.

Main subject categories: • Algebraic geometry • Polynomial equations • Quasiprojective varieties • Convex polyhedra • Toric varieties

Mathematics Subject Classification: • 14C17 Intersection theory, characteristic classes, intersection multiplicities in algebraic geometry • 14M25 Toric varieties, Newton polyhedra, Okounkov bodies • 52B20 Lattice polytopes in convex geometry (including relations with commutative algebra and algebraic geometry) • 14N10 Enumerative problems (combinatorial problems) in algebraic geometry

This graduate textbook presents an approach through toric geometry to the problem of estimating the isolated solutions (counted with appropriate multiplicity) of n polynomial equations in n variables over an algebraically closed field. The text collects and synthesizes a number of works on Bernstein’s theorem of counting solutions of generic systems, ultimately presenting the theorem, commentary, and extensions in a comprehensive and coherent manner. It begins with Bernstein’s original theorem expressing solutions of generic systems in terms of the mixed volume of their Newton polytopes, including complete proofs of its recent extension to affine space and some applications to open problems. The text also applies the developed techniques to derive and generalize Kushnirenko's results on Milnor numbers of hypersurface singularities, which has served as a precursor to the development of toric geometry. Ultimately, the book aims to present material in an elementary format, developing all necessary algebraic geometry to provide a truly accessible overview suitable to second-year graduate students.

Related Products