logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Hybrid Advanced Techniques For Forecasting In Energy Sector Weichiang Hong

  • SKU: BELL-50654856
Hybrid Advanced Techniques For Forecasting In Energy Sector Weichiang Hong
$ 31.00 $ 45.00 (-31%)

5.0

38 reviews

Hybrid Advanced Techniques For Forecasting In Energy Sector Weichiang Hong instant download after payment.

Publisher: MDPI Books
File Extension: PDF
File size: 104.97 MB
Pages: 250
Author: Wei-Chiang Hong
ISBN: 9783038972914, 3038972916
Language: English
Year: 2018

Product desciption

Hybrid Advanced Techniques For Forecasting In Energy Sector Weichiang Hong by Wei-chiang Hong 9783038972914, 3038972916 instant download after payment.

Accurate forecasting performance in the energy sector is a primary factor in the modern restructured power market, accomplished by any novel advanced hybrid techniques. Particularly in the Big Data era, forecasting models are always based on a complex function combination, and energy data are always complicated by factors such as seasonality, cyclicity, fluctuation, dynamic nonlinearity, and so on. To comprehensively address this issue, it is insufficient to concentrate only on simply hybridizing evolutionary algorithms with each other, or on hybridizing evolutionary algorithms with chaotic mapping, quantum computing, recurrent and seasonal mechanisms, and fuzzy inference theory in order to determine suitable parameters for an existing model. It is necessary to also consider hybridizing or combining two or more existing models (e.g., neuro-fuzzy model, BPNN-fuzzy model, seasonal support vector regression-chaotic quantum particle swarm optimization (SSVR-CQPSO), et cetera). These advanced novel hybrid techniques can provide more satisfactory energy forecasting performances. This book aimed to attract researchers with an interest in the research areas described above. Specifically, we were interested in contributions towards recent developments, id est, hybridizing or combining any advanced techniques in energy forecasting, with the superior capabilities over the traditional forecasting approaches, with the ability to overcome some embedded drawbacks, and with the very superiority to achieve significant improved forecasting accuracy.

Related Products