logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Introducing Mlops How To Scale Machine Learning In The Enterprise 1st Edition Mark Treveil

  • SKU: BELL-34115672
Introducing Mlops How To Scale Machine Learning In The Enterprise 1st Edition Mark Treveil
$ 31.00 $ 45.00 (-31%)

4.8

44 reviews

Introducing Mlops How To Scale Machine Learning In The Enterprise 1st Edition Mark Treveil instant download after payment.

Publisher: O'Reilly Media
File Extension: PDF
File size: 13.61 MB
Pages: 186
Author: Mark Treveil, Nicolas Omont, Clément Stenac, Kenji Lefevre, Du Phan, Joachim Zentici, Adrien Lavoillotte, Makoto Miyazaki, Lynn Heidmann
ISBN: 9781492083290, 1492083291
Language: English
Year: 2020
Edition: 1

Product desciption

Introducing Mlops How To Scale Machine Learning In The Enterprise 1st Edition Mark Treveil by Mark Treveil, Nicolas Omont, Clément Stenac, Kenji Lefevre, Du Phan, Joachim Zentici, Adrien Lavoillotte, Makoto Miyazaki, Lynn Heidmann 9781492083290, 1492083291 instant download after payment.

More than half of the analytics and machine learning (ML) models created by organizations today never make it into production. Some of the challenges and barriers to operationalization are technical, but others are organizational. Either way, the bottom line is that models not in production can't provide business impact.
This book introduces the key concepts of MLOps to help data scientists and application engineers not only operationalize ML models to drive real business change but also maintain and improve those models over time. Through lessons based on numerous MLOps applications around the world, nine experts in machine learning provide insights into the five steps of the model life cycle--Build, Preproduction, Deployment, Monitoring, and Governance--uncovering how robust MLOps processes can be infused throughout.
This book helps you:
• Fulfill data science value by reducing friction throughout ML pipelines and workflows
• Refine ML models through retraining, periodic tuning, and complete remodeling to ensure long-term accuracy
• Design the MLOps life cycle to minimize organizational risks with models that are unbiased, fair, and explainable
• Operationalize ML models for pipeline deployment and for external business systems that are more complex and less standardized

Related Products