logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Introduction To Time Series And Forecasting 2nd Edition Peter J Brockwell

  • SKU: BELL-2622884
Introduction To Time Series And Forecasting 2nd Edition Peter J Brockwell
$ 31.00 $ 45.00 (-31%)

4.0

46 reviews

Introduction To Time Series And Forecasting 2nd Edition Peter J Brockwell instant download after payment.

Publisher: Springer
File Extension: PDF
File size: 7.58 MB
Pages: 1
Author: Peter J. Brockwell, Richard A. Davis
ISBN: 9780387216577, 9780387953519, 9788181284044, 038721657X, 0387953515, 8181284046
Language: English
Year: 2002
Edition: 2

Product desciption

Introduction To Time Series And Forecasting 2nd Edition Peter J Brockwell by Peter J. Brockwell, Richard A. Davis 9780387216577, 9780387953519, 9788181284044, 038721657X, 0387953515, 8181284046 instant download after payment.

Cover --
Table of Contents --
Preface --
Chapter 1. Introduction --
1.1. Examples of Time Series --
1.2. Objectives of Time Series Analysis --
1.3. Some Simple Time Series Models --
1.4. Stationary Models and the Autocorrelation Function --
1.5. Estimation and Elimination of Trend and Seasonal Components --
1.6. Testing the Estimated Noise Sequence --
Problems --
Chapter 2. Stationary Processes --
2.1. Basic Properties --
2.2. Linear Processes --
2.3. Introduction to ARMA Processes --
2.4. Properties of the Sample Mean and Autocorrelation Function --
2.5. Forecasting Stationary Time Series --
2.6. The Wold Decomposition --
Problems --
Chapter 3. ARMA Models --
3.1. ARMA(p, q) Processes --
3.2. The ACF and PACF of an ARMA(p, q) Process --
3.3. Forecasting ARMA Processes --
Problems --
Chapter 4. Spectral Analysis --
4.1. Spectral Densities --
4.2. The Periodogram --
4.3. Time-Invariant Linear Filters --
4.4. The Spectral Density of an ARMA Process --
Problems --
Chapter 5. Modeling and Forecasting with ARMA Processes --
5.1. Preliminary Estimation --
5.2. Maximum Likelihood Estimation --
5.3. Diagnostic Checking --
5.4. Forecasting --
5.5. Order Selection --
Problems --
Chapter 6. Nonstationary and Seasonal Time Series Models --
6.1. ARIMA Models for Nonstationary Time Series --
6.2. Identification Techniques --
6.3. Unit Roots in Time Series Models --
6.4. Forecasting ARIMA Models --
6.5. Seasonal ARIMA Models --
6.6. Regression with ARMA Errors --
Problems --
Chapter 7. Multivariate Time Series --
7.1. Examples --
7.2. Second-Order Properties of Multivariate Time Series --
7.3. Estimation of the Mean and Covariance Function --
7.4. Multivariate ARMA Processes --
7.5. Best Linear Predictors of Second-Order Random Vectors --
7.6. Modeling and Forecasting with Multivariate AR Processes --
7.7. Cointegration --
Problems --
Chapter 8. State-Space Models --
8.1. State-Space Representations --
8.2. The Basic Structural Model --
8.3. State-Space Representation of ARIMA Models --
8.4. The Kalman Recursions --
8.5. Estimation For State-Space Models --
8.6. State-Space Models with Missing Observations --
8.7. The EM Algorithm --
8.8. Generalized State-Space Models --
Problems --
Chapter 9. Forecasting Techniques --
9.1. The ARAR Algorithm --
9.2. The Holt ... Winters Algorithm --
9.3. The Holt ... Winters Seasonal Algorithm --
9.4. Choosing a Forecasting Algorithm --
Problems --
Chapter 10. Further Topics --
10.1. Transfer Function Models --
10.2. Intervention Analysis --
10.3. Nonlinear Models --
10.4. Continuous-Time Models --
10.5. Long-Memory Models --
Problems --
Appendix A. Random Variables and Probability Distributions --
A.1. Distribution Functions and Expectation --
A.2. Random Vectors --
A.3. The Multivariate Normal Distribution --
Problems --
Appendix B. Statistical Complements --
B.1. Least Squares Estimation --
B.2. Maximum Likelihood Estimation --
B.3. Confidence Intervals --
B.4. Hypothesis Testing --
Appendix C. Mean Square Convergence --
C.1. The Cauchy Criterion

Related Products